Morse Theory (completed)

We finished last class with a description of the Morse index of a critical point and a false claim about adding indices.

Here's the truth.

Theorem: Let $C(n)$ be the number of critical points of any Morse function $f : X \to \mathbb{R}$ of Morse index n. Then

$$\sum_{n=0}^\infty (-1)^n C(n) = X(x)$$

where X is the Euler characteristic.
In fact, we can prove this using an appealing set of ideas.

Let $X^a = f^{-1}(a)$ and $X^b = f^{-1}(b)$. If there are no critical values of f between a and b, then

\[X^a \cong X^b. \]

diffeo

If there is a single critical point of index n between a and b, then

X_b is homotopic to $X_a + \text{an } n\text{-dimensional } \text{cell}$

\[\rightarrow \]

\[\Rightarrow \]
Roughly, the Euler characteristic is an alternating sum of the number of \(i \)-dimensional "cells" in a manifold.

For surfaces,

\[
\chi(S) = \text{# vertices} - \text{# faces} + \text{# edges}.
\]
Morse theory was one clever application of Sard’s theorem. Another is the Whitney embedding theorem (easy version).

We start with an n-manifold $X \subset \mathbb{R}^N$ for “some large N”. How large does N need to be? Well, $N \geq n$, for sure.

![Klein bottle]

It can be shown (take the 8000 topology course next year!) that the Klein bottle does not embed in \mathbb{R}^3.

Whitney showed

Theorem. Any n-manifold X^n has an embedding $f: X \to \mathbb{R}^{2n}$.
This theorem is hard! But we'll prove the easier theorem.

Theorem. Any n-manifold X^n has an embedding into \mathbb{R}^{2n+4}.

We start with a construction.

Given $X \subset \mathbb{R}^N$, the set

$$\{ (\vec{x}, \vec{v}) \in \mathbb{R}^N \times \mathbb{R}^N \mid \vec{x} \in X, \vec{v} \in T_{\vec{x}}X \}$$

is called the **tangent bundle** TX of X.

Fact: If $X \cong Y$, then $TX \cong TY$ by the associated map (f, df).

Proposition. If X is a smooth manifold, TX is a smooth manifold with

$$\dim TX = 2 \dim X.$$
Proposition. Every n-manifold X^n has an injective immersion ϕ into \mathbb{R}^{2n+1}.

Proof. We know that for some N, there is an injective immersion

$$f : X \to \mathbb{R}^N$$

If $N > 2k+1$, we will find some $\hat{a} \in \mathbb{R}^N$ so that if Π is the projection orthogonal to \hat{a}, then $\Pi \circ f : X \to \mathbb{R}^{2n+1}$ is still an injective immersion.

Idea: The only thing that could kill injectivity is if some $f(x)$ and $f(y)$ on $\Pi f(X)$ are connected by a line in direction of \hat{a}.

Let $h : X \times X \times \mathbb{R} \to \mathbb{R}^N$ be given by

$$h(x,y,t) = t [f(x) - f(y)]$$
Then $\text{Im } h = \text{points on lines which intersect } f(X) \text{ more than once. Since}$

$$\dim(X \times X \times I) = 2n + 1 < \dim \mathbb{R}^N = N,$$

the only regular values of ϕh are points not in $\text{Im } h$. So $\text{Im } h$ is a measure 0 set of \mathbb{R}^N, by Sard's theorem.

Idea: The only thing that could kill immersivity is if $a \in T_x X$ for some x.

Again, since

$$\dim T_X = 2n < \dim \mathbb{R}^N = N,$$

we see $\text{Im } g$ is a measure 0 set of \mathbb{R}^N, again by Sard.