Winding Numbers and more!

Suppose we have some compact, connected $n-1$ manifold contained in X and a smooth map $f : X \to \mathbb{R}^n$.

![Diagram of a compact, connected manifold being mapped into \mathbb{R}^n.]

We want to consider how $f(x)$ wraps in \mathbb{R}^n, so pick some $z \notin f(x)$ and consider

$$u(x) = \frac{f(x) - z}{|f(x) - z|} : X \to S^{n-1}$$

(this is the trick we used in the Fundamental Theorem of algebra proof last time.). We know

$\deg u$ is a homotopy invariant of u.

Definition. \(\text{deg}_z u \) is called the \(\text{mod} \ 2 \) winding number of \(f \) around \(z \), and this is written
\[W_z (f, z). \]

We first claim

\[\begin{align*}
 & \hspace{1cm} \begin{array}{c}
 \text{Diagram 1} \\
 \text{Diagram 2} \\
 \text{Diagram 3}
 \end{array}
\end{align*} \]

Theorem. Suppose \(X = \mathbb{R}^D \) and let \(F: D \to \mathbb{R}^n \) extend \(f: X \to \mathbb{R}^n \). If \(z \) is a regular value of \(F \) and \(z \notin f(x) \), then
\[W_z (f, z) = \# \text{ of points in } F^{-1}(z). \]

Proof. We observe that
\[W_z (f, z) = \text{deg}_z u = I_x (u, 3 \mathbf{v} \mathbf{3}) \]
for a direction \(u \in S^{n-1} \). But if \(u \) extends to \(D \), then \(I_x (u, 3 \mathbf{v} \mathbf{3}) = 0 \) by our Boundary Theorem from last class.
So if \(z \notin F(D) \), we're done. Suppose \(z \in F(D) \). By stack of records, there are open sets in \(D \) called \(V_1, \ldots, V_n \) mapping diffeomorphically to open set \(U \) containing \(z \).

Now if we take little balls \(B_i \) around each of the points in \(F^{-1}(z) \), then \(\omega \) does extend to \(D - (B_1 \cup \ldots \cup B_n) \), so we can define

\[
\omega(x) = \frac{F(x) - z}{|F(x) - z|}
\]

and the collection of maps \(\omega, \omega_1, \ldots, \omega_n \) extend to \(D - (B_1 \cup \ldots \cup B_n) \).
But this means that for \(v \in S^2 \),

\[
I_2(u, \xi v^3) + I_2(u_1, \xi v^3) + \ldots + I_2(u_n, \xi v^3) = 0 \mod 2
\]
or if \(f_i = F |_{\partial B} \)

\[
\omega_z(f_i, z) = \omega_z(f_2, z) + \ldots + \omega_z(f_n, z) \mod 2.
\]

Since \(F : B_i \to U \) is a diffeomorphism, by taking the ball small enough in \(D_3 \), we can ensure \(\omega_z(f_i, z) = 1 \) for all \(i \), proving the Thm.

We can use this to prove:

Jordan-Brouwer Separation Theorem.

Given a compact, connected \(n-1 \) manifold \(X \subset \mathbb{R}^n \), \(\mathbb{R}^n - X \) a consists of two connected open sets, the "inside" \(I \), whose closure is a compact \(n \) manifold with boundary \(X \) and the "outside" \(O \).
The proof is a long and glorious homework assignment, so I’ll give only the basic idea:

\[I = \text{all } z \text{ with } \omega^2(x, z) \neq 0 \]
\[O = \text{all } z' \text{ with } \omega^2(x, z') = 0 \]

Next time we’ll prove

Borsuk-Ulam Theorem. Let \(f : S^k \to \mathbb{R}^{k+1} \) be a map that avoids \(0 \in \mathbb{R}^{k+1} \). Suppose \(f \) is odd

\[f(-x) = -f(x). \]

Then \(\omega^2(f, 0) = 1 \).