Larger Lefschetz Numbers.

We ended last class with a discussion of fields on surfaces and their associated fixed points. We used this to compute $\chi(S)$ for surfaces in \mathbb{R}^3.

Theorem. If S is a (compact, smooth, orientable) surface of genus g, then $\chi(S) = 2 - 2g$.

What about other fixed points?
These fixed points are not Lefschetz! But by our previous prop, a homotopic map has only Lefschetz fixed points.

Splitting Theorem. Let U be a neighborhood of a fixed point x which contains no other fixed points of f. Then a homotopy f_t of f which if outside U so that f_t has only Lefschetz fixed points and each $f_t = f$ outside some compact subset of U.
We now want to define:

Definition. If \(x \) is an isolated fixed point of \(f: \mathbb{R}^k \to \mathbb{R}^k \), we let \(f_1 \) be a local homotopy with only Lefschetz fixed points and

\[
L_x(f) = \sum_{f_1(x) = x} L_x(f_1)
\]

Here is a surprising idea: On \(\mathbb{R}^k \), we can define a map

\[
g_x(z) = \frac{f(z) - z}{|f(z) - z|}
\]

near any isolated fixed point \(z \) of \(f \). Take a sphere \(S^{k-1} \) centered at \(z \) and consider

\[
g_x \in S^k : S^k \to S^k
\]

Definition. \(L_x(f) = \deg g \).
Proof.

Assume \(f: \mathbb{R}^k \to \mathbb{R}^k \) fixes only \(\bar{0} \) in \(U \).
Now choose a bump function \(\Phi \) so that

\[
\Phi \text{ is smooth} \quad \checkmark
\]
\[
is 1 \text{ in a neighborhood of } 0 \text{ contained in a compact subset } K \text{ of } U
\]
\[
is 0 \text{ outside } K
\]

Our idea is to choose some vector \(\bar{v} \) so that

\[
f_t(x) = f(x) + t \Phi(x) \bar{v}
\]

works.

Claim. If \(\bar{v} \) is really small, then \(f_t \) has no fixed points outside \(V_t \) in \(U \).

Consider \(K-V \). This is compact, and \(f \) has no fixed points on it, since \(K-V \subseteq U \), and \(0 \notin K-V \). So \(|f(x)-x| > c > 0 \) on \(K-V \).
Choose \(|\bar{v}| < c/2 \). Since \(t\Phi \leq 1 \), this works.
Outside \(K \), \(f_t = f \), so there are no fixed points.
By Sard's theorem, we can pick \(\tilde{V} \) close to 0 so that \(-\tilde{V}\) is a regular value for
\[x \mapsto f(x) - \tilde{V} x. \]

Now suppose \(x \) is a fixed point of \(f_\tilde{V} \).
We know \(x \in V \), so
\[f_\tilde{V}(x) = f(x) + \tilde{V}. \]

Thus
\[d(f_\tilde{V})_x = df_x. \]

Now \(x \) is Lefschetz for \(f_\tilde{V} \) \iff \(df_\tilde{V})_x - I \) nonsingular.
But
\[d(f_\tilde{V})_x - I = df_x - I \]
\[= d((f(x) - x)_x) = \text{nonsingular, since} \]
\[f_\tilde{V}(x) = x \implies f(x) - x = -\tilde{V} \]
and \(-\tilde{V}\) is a regular value for \(f(x) - x \).

Now in general, take local coordinates.
These two ideas agree!

Example: do calculations.

Proposition. At Lefschetz fixed points, the numbers agree.

Proof. As usual, let $X = \mathbb{R}^n$ and suppose $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ has 0 as a Lefschetz fixed point.

We can write

$$f(x) = Ax + \epsilon(x), \text{ where } A \approx df_0$$

near the origin. Since $A-I$ is an isomorphism, it maps the unit sphere to an ellipsoid at least $c > 20$ from 0. By linearity,

$$(A-I) z > 12c \text{ from origin.}$$
But then choosing B around δ
small enough so $\frac{|e(z)|}{|z|} < \frac{\delta}{2}$ ($e(z)$ is 2nd order)
we see that on B, if $f_k(z) = e(z)z$

$$f_k(z) = Az + te(z),$$

then for all t in $[0,1]$, $|f_k(z) - z| = |Az + te(z) - z|$

$$\geq |Az - z| - t|e(z)|$$

But $|Az| < c|z|^2$, $|e(z)| < c\delta^2/2$, so for small

$$> c|z| - c|z|^2/2 > 0$$

So we have $|f_k(z) - z| > 0$.
This means that f_t is a homotopy between maps ϕ of maps

$$g_t(z) = \frac{f_t(z) - z}{|f_t(z) - z|}$$

defined on B a small S^{n-1} around \bar{D} to S^{n-1}. But then

$$\deg g_2(z) = \text{our def. of Lefschetz degree}$$

$$\deg g_0(z) = \deg \frac{(A-I)z}{|A-I|z}.$$

Fact. Any linear isomorphism $B: \mathbb{R}^n \to \mathbb{R}^n$ is homotopic to I if $\det B > 0$, through isomorphisms and to a reflection if $\det B < 0$.
In the first case, \(\deg \frac{A-I}{|A-I| z} = \deg \frac{z}{|z|} = 1 \),
in the second, \(\deg \frac{(-z_1, z_2, \ldots, z_n)}{|z|} = -1 \).

Cool! We can now define Lefschetz number again in a more insightful way.

Definition. Let \(f: X \to X \) be a map with finitely many fixed points \(x_i \) on a compact manifold

\[
L(f) = \sum_{x_i} L_{x_i}(f),
\]

where

\[
L_{x_i}(f) = \deg \frac{f(x)-x}{|f(x)-x|} : \text{Ball around } x_i \to S^{\dim X-1}.
\]
Try some examples!!

Lefschetz number 2?