Integration and Mappings

We have previously proved that when \(f: X \to Y \) is a diffeomorphism, we have

\[
\int_X f^* \omega = \pm \int_Y \omega
\]

for any \(k \)-form on \(Y \) (when \(X, Y \) are compact, oriented), where the sign depends on whether \(f \) preserves or reverses orientation. We now generalize:

Theorem. If \(f: X \to Y \) is any smooth map between compact oriented manifolds of dimension \(k \), then for any \(k \)-form \(\omega \) on \(Y \),

\[
\int_X f^* \omega = \deg(f) \int_Y \omega.
\]
We start with a special case:

Theorem. If $X = 2W$ and $f: X \to Y$ extends to $F: W \to Y$ then

$$\int_X f^* w = 0$$

for any w on Y, with $\dim w = \dim Y$.

Proof. We compute

$$\int_X f^* w = \int_{2W} F^* w = \int_W d F^* w$$

$$= \int_W F^* dw$$

But dw is a $(k+1)$-form on the k-manifold Y, so $dw = 0$, completing the proof.
Corollary. If \(f_0, f_1 : X \to Y \) are homotopic maps of the \(k \)-manifolds \(X \) and \(Y \), then for every \(k \)-form \(\omega \) on \(Y \),

\[
\int_X f_0^* \omega = \int_X f_1^* \omega.
\]

Proof. Let the homotopy be \(F : X \times I \to Y \).

We know \(\frac{\partial \theta}{\partial t} = X_1 - X_0 \), so by the theorem

\[
\theta(\partial \theta) = \int_{\theta(X \times I)} \theta(\partial \theta)^* \omega = \int_{\theta(X_1 \times I)} (\partial \theta)^* \omega - \int_{\theta(X_0 \times I)} (\partial \theta)^* \omega,
\]

but on \(X_1 \), \(\partial \theta = f_1 \) and on \(X_0 \), \(\partial \theta = f_0 \).

We need one last lemma:

Lemma. Let \(y \) be a regular value of \(f : X \to Y \). \exists a neighborhood \(U \) of \(y \) so that

\[
\int_{\partial X} f^* \omega = \text{deg}(f) \int_X \omega
\]

for every \(\omega \) supported in \(U \).
Proof. By the stack of records theorem, \(\exists \) a bunch of disjoint \(V_1, \ldots, V_n \subset X \) so that \(f: V_i \to U \) is a diffeomorphism for all \(i \). Further, \(f^* \omega \) is supported in \(U V_i \).

So
\[
\int_X f^* \omega = \sum_i \int_{V_i} f^* \omega = \sum_i \sigma_i \int_U \omega
\]
where \(\sigma_i = \pm 1 \), depending on whether \(f: V_i \to U \) preserves or reverses orientation.

We already know \(\sum_i \sigma_i = \deg f \). \(\therefore \)

We are now ready to prove the theorem!

\(\odot \) Pick a regular value \(y \) and neighborhood \(U \).

By the isotopy lemma, \(\forall z \in Y \)
\(\exists \ h: Y \to Y \) homotopic to \(I \)
so that \(h(y) = z \) and \(h(U) \) is an open neighborhood of \(z \), where \(h \) is a diffeo.
By compactness, we can cover \(Y \) with some \(h_1(U), \ldots, h_n(U) \).

Use a partition of unity to write \(w \) as a sum of forms \(h_i(U) \), supported on each one of

Take any such \(w \).

Since \(h \circ I \), \(h \circ f \) is a diffeomorphism of \(Y \) which is orientation preserving since it is \(\sim \) to \(I \), so

\[
\int_X f^* w = \int_X (h \circ f)^* w = \int_X \left(\sum h_i^* w \right)
\]

but \(h_i^* w \) is supported in \(U \), so by the

\[
\int_X f^*(h_i^* w) = \deg(f) \int_Y h_i^* w
\]

But \(h \) is a diffeomorphism of \(Y \) which is orientation preserving since it is \(\sim \) to \(I \), so

\[
\deg(f) \int_Y h_i^* w = \deg(f) \int_Y w,
\]

as claimed.