General discussion of 0th order methods.

We want to consider a class of zeroth order methods which are guaranteed to converge. First, we need to define convergence.

Definition. A numerical method M which produces a sequence $\{x_n\} = x, x_1, \ldots$ of points is said to be globally convergent for f if at least one of the limit points of $\{x_n\}$ is a point where $\nabla f(x_*)$
We are going to consider conditions under which a numerical method can fail to converge.

Note. \(f(x_{k+1}) < f(x_k) \) is not enough to guarantee convergence.

Examples.

a) \(f(x) = x^2 \), \(x_k = (-1)^k (1 + 2^{-k}) \)

\[\text{Diagram for Example a)} \]

b) \(f(x) = x^2 \), \(x_k = 1 + 2^{-k} \)

\[\text{Diagram for Example b)} \]
In each case, we have.

Definition. d is a descent direction if
\[-\nabla f \cdot d > 0\]

and we have stepped in a descent direction. But

a) our steps were too long
b) our steps were too short
c) the descent directions → a non descent dir

We will show that if we arrange
to avoid all these problems, our method must converge.
So consider Compass search.

Let Δ_k be our step size, Δ_0 an initial size, and Δ_{tol} a size beneath which we quit.

Step 1. Let $D_n = \mathbb{R} \times e_1, \ldots, e_n$ be the set of coordinate directions. Compute $f(x_k + \Delta_k d_k)$ for all $d_k \in D_n$.

Step 2. If $f(x_k + \Delta_k d_k) < f(x_k)$, for some d_k, choose the smallest such.

Choose $x_{k+1} = x_k + \Delta_k d_k, \quad \Delta_{k+1} = \Delta_k$.

Step 3. If not, the step fails.

Choose $x_{k+1} = x_k, \quad \Delta_{k+1} = \Delta_k / 2$.

If $\Delta_{k+1} < \Delta_{tol}$, terminate.
The idea of proving that CS converges is pretty clever.

First, note that any vector in \mathbb{R}^n makes an angle with $\cos \Theta \geq \frac{1}{\sqrt{n}}$ with some $d \in D_n$.

So

$$-\nabla f \cdot d = \| -\nabla f \| \| d \| \cos \Theta \geq \frac{1}{\sqrt{n}} \| \nabla f \| \| d \| .$$

Now if the step failed, we know

$$0 \leq f(x_k + \Delta_k d) - f(x_k)$$

Consider the function

$$f(x_k + \alpha \Delta_k d)$$
By the mean value theorem, at some point $x \in [0,1]$,
\[
\frac{d}{d\alpha} f(x_k + \alpha \Delta_k d) = \nabla f(x_k + \Delta_k d) \cdot \Delta_k d
\]

So we have
\[
\nabla f(x_k + \alpha \Delta_k d) \cdot \Delta_k d - \nabla f(x_k) \cdot \Delta_k d \geq -\nabla f(x_k) \cdot \Delta_k d
\]
or
\[
(\nabla f(x_k + \alpha \Delta_k d) - \nabla f(x_k)) \cdot \Delta_k d \geq -\nabla f(x_k) \cdot \Delta_k d
\]
\[
\geq \frac{1}{\sqrt{n}} \|\nabla f\| \|d\|
\]

Now suppose ∇f is uniformly continuous. Then for some M
\[
\|\nabla f(x_k + \alpha \Delta_k d) - \nabla f(x_k)\| \leq M \|\alpha \Delta_k d\| \leq \frac{\|\Delta_k d\|}{\sqrt{n}}
\]
So
\[
M \|\Delta_k d\| \geq \frac{1}{\sqrt{n}} \|\nabla f\| \|d\|
\]
and

$\|\nabla f\|_2 \leq \sqrt{n} M \Delta_k$

Now this is amazing! We have figured out a bound on $\|\nabla f\|_2$ at a failed step. Now if we could guarantee that

\exists a sequence of failed steps of infinite length which converges then we could conclude that $\nabla f = 0$ at the limit point because $\Delta_k \to 0$ as the # of failed steps goes up.