High-altitude free fall
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The problem of an object falling from high altitudes where the variation of atmospheric pressure
cannot be neglected is investigated. The equation of motion for the variation of the velocity of the
object as a function of altitude is solved exactly. The results show that, unlike an object falling in
a uniform atmosphere whose speed monotonically increases and approaches the terminal speed, the
speed of a high-altitude falling object first increases, goes through a maximum, and then decreases
and approaches the terminal speed from above. The results also show that if the initial altitude of the
object is greater than a critical value, the object always strikes the ground with a speed that is higher
than its terminal speed by a finite value, in contrast to the case of a freely falling object in a uniform

atmosphere.

L. INTRODUCTION

Thirty-six years ago, on 16 August 1960, United States
Air Force Captain Joseph W. Kittinger, Jr. undertook the
task of carrying out a fascinating, yet very dangerous and
arduous, experiment in atmospheric physics as a part of a
program known as Project Excelsior. Kittinger’s purpose
was to test the apparatus necessary to allow American mili-
tary pilots to safely escape by parachute from aircraft flying
at altitudes above 100 000 feet (~30 500 m). To do this,
Kittinger rode in an open gondola suspended below a giant
plastic helium-filled balloon, which would swell to a diam-
eter of 200 feet (~61 m) at high altitude, that would carry
him from his launch point due east of the Trinity Site in
southern New Mexico (location of the world’s first nuclear
explosion) in a circuitous route, first eastward over the Sac-
ramento Mountains and then westward again back over the
launch site in the Tularosa Basin. The balloon’s ascent rate
was 1200 to 1300 feet per minute (~6.1 to 6.6 m/s), and
within an hour and a half of liftoff, Kittinger had reached an
elevation of 102 800 feet (~31 300 m) where he was above
99% of the Earth’s atmosphere. Then Kittinger walked over
to the door of the gondola where a thoughtful sign reminded
him that he was about to step off the “‘highest step in the
world’’ and, with only a little hesitation, leaned forward and
began his 16-mile (~25.7-km), four-and-a-half minute free-
fall.

At first, because the atmosphere had such a low density,
Kittinger felt as if he were suspended in space, not moving at
all. When he rolled over and looked back up at his balloon, it
seemed to shoot away from him as if it had been snapped by
a huge rubber band. Of course, he knew that it was he who
was moving but the absence of any ‘‘wind’’ confused his
perception. In the early part of his fall, Kittinger was accel-
erating at very nearly the full acceleration due to % ravity, or
about 22 miles per hour each second (~9.8 m/s%); at this
altitude the acceleration due to gravity is only about 0.9%
less than its value at the surface. However, after 16 s his
Beaupre stabilization parachute opened, caught the slight
rush of air, and he found himself descending as planned with
his feet downward. He continued to accelerate at a very high
rate, however, and at 90 000 feet (~27 430 m), 30 s into the
fall, he reached his maximum velocity of 614 miles per hour
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(~274 m/s), very nearly the speed of sound at that altitude.
Below that altitude the steadily increasing density of the at-
mosphere began to decelerate Kittinger, and as he passed
through 50 000 feet (~15 240 m), he had slowed to a mere
250 miles per hour (~112 m/s). Between 50 000 and 40 000
feet (~15 200 and 12 200 m) he passed through the coldest
part of the atmosphere, where the temperature dropped to
nearly —100 deg F (~73 deg C below zero). He fell through
40 000 feet (~12 200 m) at 2.5 min into the jump, through
30 000 feet (~9100 m) at 3.5 min, and then through 20 000
feet (~6100 m) at 4.4 min, his speed steadily decreasing as
the density of the atmosphere increased. Four minutes and 37
s into his jump, at 18 000 feet (~5500 m), his main para-
chute opened right on schedule and his descent rate dropped
to a mere 12 miles per hour (~5.4 m/s). Then, 13 min and 45
s after leaving the balloon and with a total mass (with equip-
ment) of 320 pounds (~145 kg), Kittinger landed without
injury on the sage-covered desert west of Tularosa, NM, hav-
ing completed the longest free-fall ever attempted, having
demonstrated the effectiveness of the survival techniques and
equipment he and his colleagues had developed, and, inci-
dentally, havmg carried out a fascmatmg and mstructlve ex-
periment in free-fall in the presence of air resistance.’

The problem of free-fall in the presence of air resistance is
discussed in nearly every textbook on mechanics. The force
of air resistance, F(v), is not in general a simple function of
velocity. However, in many cases, a good approximation can
be obtained by using a combination of a linear term and a
quadratic term as follows:

F(v)=—k1v—k2v|v|. (1)

For small objects moving at low speeds, the linear term is
dominant. However, even for objects of baseball size, the
quadratic term domlnates for speeds in excess of a few cen-
timeters per second.* For speeds of the order of 24 m/s and
higher but below the speed of sound, the force of air res1s-
tance is approx1mately given by the quadratic term only.’
Since this speed is reached by a freely falling object in about
2.4 s, it is therefore reasonable to consider a drag force con-
sisting of a single quadratic term, namely,

F(v)=—kv|1|, 2)
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for falling objects that remain in the air for times much larger
than this. In this case, the equation of motion can be written
as

dv
—=—-mg+k’. 3
mv - mg 3
For a uniform atmosphere, k is a constant and this equation
can readily be integrated analytically to give

2
|v| =y[1- e 28(z0= )Y, ]1/2, (4)

where z; is the initial altitude from which the object is re-
leased from rest and z is its altitude at a later time. The
terminal speed, v,, of the object is given by

172
u=|"E) ®

As Eq. (4) shows, an object released from any height hits the
ground with a speed somewhat less than its terminal speed.

When an object is released from a high altitude, the as-
sumption of a uniform atmosphere is no longer valid as the
atmospheric pressure, and hence, the coefficient of drag, k, in
Eq. (3) varies with altitude. Consequently, Eq. (4) will no
longer represent the solution of Eq. (3). In a numerical cal-
culation, Shea® noticed that if the drag force is multiplied by
an exponential function of altitude, the speed of the falling
object as a function of time goes through a maximum instead
of attaining the classical terminal speed.

In what follows, we investigate this problem in detail by
solving the equation of motion exactly. We then explain
some of the interesting features of a high-altitude freely fall-
ing object resulting from the altitude dependence of atmo-
spheric pressure.

II. THEORY

In an isothermal atmosphere the variation of pressure as a
function of altitude, z, is given by the well-known Laplace
law of atmospheres’

P=P0€_M32/RT, (6)

where P, is the pressure of the atmosphere at sea level, M is
the average molar mass of the air, R is the ideal gas constant,
and T is the absolute temperature. Although this equation
assumes an isothermal atmosphere which, strictly speaking,
is not the case, the coefficient M g/RT can be fitted to the
experimental data so that Eq. (6) can fairly well describe the
variation of the atmospheric pressure with altitude. Figure 1
shows the variation of pressure as a function of altitude for
the standard atmosphere.® To a good approximation, this
variation can be described by an exponential function. An
exponentlal least-squares fit gives a value of 1.3401x10™*

~! (or 0.134 01 km™") for the coefficient Mg/RT in Eq.
(6) With an average molecular mass of 0.0288 kg/mol for
the air, this gives an effective temperature of about 254 K for
the atmosphere. The result is shown in Fig. 1. In the rest of
this paper, we refer to the nonuniform atmosphere described
by Eq. (6) as the Laplacian atmosphere, and to RT/Mg as
the charactenstrc height of the atmosphere, \, with a value of
7.4621x10° m.

The coefficient of air resistance is proportional to air den-
sity which, in turn, is proportional to air pressure in an iso-
thermal atmosphere. Therefore, for the Laplacian atmo-
sphere, we find
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Fig. 1. Altitude dependence of atmospheric pressure. Standard Atmosphere
1962 data (dots) and their exponential least-squares fit (solid curve).

dv _
mvz-z-=—mg+k0vze 8 7

instead of Eq. (3), where k is the coefficient of air resistance
at sea level (1 atm pressure). As can be seen, there is no
terminal speed that can be obtained by setting the left-hand
side of this equation equal to zero. However, we rewrite this
equation as

dv (
v-=-g

7 vze'z”‘) 8)

and we continue to refer to the quantity (mg/ky)"? as the

terminal speed, v;, i.e., the terminal speed of the same object
falling in an isobaric atmosphere of pressure P, (1 atm)
Defining new variables u and x by u=kyv*/mg=(v/v,)?

and x=exp(—z/\) transforms Eq. (8) into

du+ _a 0
E au—;a ()

where a=2g\/1? is a dimensionless constant. Multiplying
both sides of this equation by the integrating factor exp(ax)
gives

ax

d(ue**)=a = dx. (10)

Finally, integration of Eq. (10) gives

ax e’f
u=ae_‘”‘f - dé, (11)
axg §

where we have used the initial condition #=0, x=x,. The
exponential integral on the right-hand side of this equation is
a well known function, which can also be written as a power
series to give

u=ae"”[

-3 T —xO)}- (12)

Transforming the variables back to v and z, we get
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Fig. 2. Speed as a function of altitude for a freely falling object in a La-
placian atmosphere for initial altitudes of 10, 20, and 30 km. The speed of
the same object falling in a uniform atmosphere (dotted curve) is also shown
for comparison.
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which is an exact equation, giving the velocity of an object
falling from an initial high altitude z, as a function of alti-
tude. The negative sign on the right-hand side of the equation
is due to the fact that the upward direction is chosen to be
positive. As mentioned earlier, the quantity a is a dimension-
less constant and M is the characteristic height of the atmo-
sphere. Again, we stress the fact that v, is only representing
the quantity (mg/ ko) 2. This quantity represents the terminal
speed the same object would have had, if it had been falling
in a uniform atmosphere. In a Laplacian atmosphere, there is
no terminal speed.

II1. DISCUSSION

We have checked the validity of Eq. (13) by comparing
the values of the velocity obtained from this equation to
those obtained from the numerical integration of the differ-
ential equation of motion, Eq. (8). We used a Euler—
Richardson algorithm for an object falling freely from an
initial altitude of 50 km. The numerical integration results
and those obtained from Eq. (13) were identical throughout
the entire motion.

The coefficient of second-order air resrstance kg, for a
spherical object is grven by kO 0.22D?, where D is the
diameter of the sphere in meters. Therefore for a pebble of
mass 0.01 kg and diameter 0.02 m, we find a terminal speed
of about 33 m/s. Similarly, for a skydiver of mass 70 kg and
an effective diameter of about 1 m, we find a terminal speed
of about 56 m/s. We use a terminal speed of v,=40 m/s
throughout our calculations; however, the conclusions are
general.

Graphs of Eq. (13) for three different initial altitudes are
given in Fig. 2. A graph for the same object falling in a
uniform atmosphere, described by Eq. (4), is also given for
comparison. These graphs show several interesting features.
First, unlike the case of a uniform atmosphere where the
speed of the falling object quickly approaches the terminal
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Fig. 3. Variation of the altitude at which the maximum speed occurs (z,,,)
as a function of the initial altitude (z,). The dimensionless parameters a and
x are defined by a=2\ko/m=2gA/v} and x=exp(—z/\), respectively.
The dark graph is due to the congestion of 200 points that were used to
construct the graph.

speed, a high-altitude freely falling object increases its speed
to a maximum value far above the terminal speed and then
approaches the terminal speed from above. The maximum
speed reached by the falling object corresponds to dv/dt=0
which makes the left-hand side of Eq. (8) vanish. Therefore,
the maximum speed and the altitude at which this maximum
speed occurs are related by

2
vmax _ Zmax
" ) —exp( X ), (14)

1

which is simply u,,,=1/X.- Substitution into Eq. (12)
gives

~@Xmay

1=ax,.e

X max (axmax)n_(axo)n
In + > omad 07
Xg =1 nn!

(15)

which is a transcendental equation for the altitude at which
the maximum speed occurs as a function of the initial alti-
tude. Although this equation is fairly complicated, its solu-
tions are very interesting. Figure 3 shows the solutions of
this equation. As can be seen from this graph, to a good
approximation, axp,, is a linear function of ax,. In fact, a
linear least-squares fit to the 200 points that construct Fig. 3
gives

axp,=1.01155 axy+3.232 32, (16)

with a linear correlation coefficient of 0.999 98. This linear
equation reproduces the roots of Eq. (15) with an accuracy of
better than 0.9% in the range of 20=<ax,=<200. For ax(<20,
the accuracy decreases, however, this is the region of high
altitudes. Since x=exp(—z/\), we get

d(axmax) - dzmax
X pax )

and since A\=RT/Mg="7.4621X 10® m, we find an error of
about 75 m in dz,, for every 1% error in ax,,. For ex-
ample, for an error of 10% in ax ,, , we get an error of about
750 m in the altitude at which the maximum speed takes
place. For high altitudes, however, this error is small. Nev-
ertheless, Eq. (16) should only be used as a quick tool for

1”n
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Fig. 4. Maximum speed reached by a high-altitude freely falling object as a
function of its initial height in dimensionless quantities.

estimating the altitude of maximum speed when the initial
altitude is known. For exact values, Eq. (15) should be
solved numerically. A remarkable feature of Eqgs. (15) and
(16) is that they are general relationships, independent of the
values of the parameters A and v,, between the dimension-
less quantities ax,, and ax,.

Once x,,,, is obtained, the maximum speed can be calcu-
lated from Eq. (14). Figure 4 shows the maximum speed
reached by a high-altitude falling object as a function of its
initial height.

Another striking feature of the results is the discrepancy
between the limiting value of the speed reached by a high-
altitude falling object in a Laplacian atmosphere versus that
reached in a uniform atmosphere. In a uniform atmosphere, a
falling object very quickly approaches its terminal speed. In
a Laplacian atmosphere, on the other hand, an object falling
from a high altitude approaches a limiting speed that is
somewhat higher that its terminal speed. This can be seen in
Fig. 5, where the speed with which the object strikes the
ground, the impact speed, is plotted as a function of the
initial height. To do so, we have set z=0 in Eq. (13) and
plotted v/v, as a function of z,/\ for an object whose termi-
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Fig. 5. Impact speed of an object falling freely in a Laplacian atmosphere as
a function of its initial height in dimensionless quantities (solid curve). The
graph for the same object falling in a uniform atmosphere (dotted curve) is
also given for comparison. Note that if the initial altitude is greater than a
critical value (zo/A=0.051 082 in this case), the object always strikes the
ground with a speed that is higher than its terminal speed.
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Fig. 6. Asymptotic ratio of the impact speed to the terminal speed of a
high-altitude falling object in a Laplacian atmosphere as a function of its
terminal speed. Note that v,/(2g\)?=1/a'? is a dimensionless quantity,
with a value of 0.1045 corresponding to v,=40 m/s.

nal speed is 40 m/s. As can be seen, if the initial altitude is
greater than a critical value, the object always strikes the
ground with a speed that is higher than its terminal speed,
and whose value increases asymptotically with the initial al-
titude of the object. The critical initial altitude and the as-
ymptotic value of the impact speed, — tp,,(*), are both func-
tions of the parameters used. For our choice of parameters,
they are given by zy(crit)/A=0.051082 and — v, (*)/y,
=1.0055722, respectively. Furthermore, the ratio
— Ump(®)/ v, increases with the terminal speed of the object,
as depicted in Fig. 6.

Regarding Kittinger’s experiment, it would be interesting
to see how his data fit our model. As stated earlier, Kittinger
reached a maximum speed of 274 m/s at an altitude of
27 430 m. Substituting these numbers into Eq. (14), we ob-
tain a terminal speed of 43.7 m/s. Furthermore, since the
maximum speed and the altitude at which the maximum
speed takes place must also satisfy Eq. (13), we can use these
values and Eq. (13) to find the value of the initial altitude,
zg, which we find to be 34 670 m. This number is different
from Kittinger’s actual initial altitude of about 31 300 m due
to the fact that 16 s into the jump he opened his Beaupre
stabilization parachute, changing the drag coefficient and,
hence, the constants of the motion. With the values of z,,
and v, thus obtained, we can now evaluate Kittinger’s speed
at any altitude during his fall. For example, at an altitude of
15 240 m (50 000 feet), Eq. (13) gives a speed of 129 my/s.
This compares with the value of 112 m/s (250 miles per
hour) reported by Kittinger. Considering the significant fig-
ures reported for the Kittinger experiment, the agreement is
quite good.

IV. CONCLUSION

Due to the altitude dependence of atmospheric pressure,
the dynamics of objects falling from high altitudes are quite
different from those of objects falling in a uniform atmo-
sphere. Nevertheless, the equation of motion can still be
solved exactly to obtain the variation of the velocity of the
object as a function of its altitude. The results show that the
object’s speed first increases, reaches a maximum value, and
then decreases and approaches the terminal speed from
above. The maximum speed reached by the falling object is a
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monotonically increasing function of its initial altitude. It is
also found that if the initial altitude of the object is greater
than a critical value, the object always strikes the ground
with a speed that is higher than its terminal speed by a finite
value, which increases asymptotically with the initial alti-
tude. This is in contrast to the case of a falling object in a
uniform atmosphere. The asymptotic ratio of the impact
speed to the terminal speed increases with the terminal speed
of the object.

Numerical solution of the equations of motion® for posi-
tion and velocity as a function of time of an object falling
through a nonuniform atmosphere is a trivial task and, there-
fore, we did not present them here.
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A novel derivation of the Langevin equation that was recently presented in this journal for a
univariate continuous Markov process is generalized here to the more widely applicable multivariate
case. The companion multivariate forward and backward Fokker—Planck equations are also derived.
The derivations require just a few modest assumptions, and are driven by a self-consistency
condition and some established theorems of random variable theory and ordinary calculus. The
constructive nature of the derivations shows why a multivariate continuous Markov process must
evolve according to equations of the canonical Langevin and Fokker—Planck forms, and also sheds
new light on some uniqueness issues. The need for self-consistency in the time-evolution equations
of both Markovian and non-Markovian stochastic processes is emphasized, and it is pointed out that
for a great many non-Markovian processes self-consistency can be ensured most easily through the
multivariate Markov theory. © 1996 American Association of Physics Teachers.

L INTRODUCTION

A recent article in this journal' presented a derivation of
the Langevin equation for a univariate (scalar) continuous
Markov process. Here we generalize that derivation to the
multivariate case in which the process has M=1 compo-
nents, and we also derive the companion forward and back-
ward Fokker—Planck equations. We shall presume here an
acquaintance with certain parts of Ref. 1, specifically its
Secs. I A-II C, so that we may avail ourselves of several
important definitions and theorems introduced there; also, a
familiarity with the comparatively simple derivation of the
univariate Langevin equation given in the Appendix of Ref.
1 will afford a helpful perspective on our analysis here of the
more complicated multivariate case.

We begin with a quick review of the univariate results
obtained in Ref. 1. If a function X of time ¢ is continuous,
memoryless, and stochastic—i.e., if X is a continuous Mar-
kov process—then its time evolution will be governed by an
equation of the form

X(t+dt)=X(t)+AX(2),0)dt

+DY2(X(1),)N(¢)(dt) 2. (1.1
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This is the (univariate) standard form Langevin equation. In
it, dt is to be regarded as a real variable that is confined to
the interval [0,€], where € is an arbitrarily small positive
number; A and D can be any two smooth functions, with D
being non-negative; and N(¢) is a normal random variable
that has a mean 0 and variance 1, with N(¢) and N(¢') sta-
tistically independent if t#¢'.

Equation (1.1) is essentially an ‘‘updating formula’’: Once
the functions A and D have been specified, Eq. (1.1) tells us
how to compute, from the value of the process at time ¢, its
value at any infinitesimally later time ¢+dt. As was shown
in Ref. 1, the functional form of this updating formula is a
consequence of requiring X to be not only continuous, in the
sense that X(¢+dt)— X(¢) as dt—0, and memoryless, in the
sense that the right side does not depend on the value of X at
any time before ¢, but also self-consistent: It should make no
difference (statistically and to first order in dt) whether we
compute the increment from ¢ to ¢+dt by a single applica-
tion of the updating formula, or by successive applications
thereof to successive subintervals of [¢,¢+dt]. The Langevin
equation can be used to derive time-evolution equations for
the moments of X, and it can also be used to construct nu-
merical simulations of X.

The appearance of the factor (d HY?

in the random term of
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