Lecture 2. Vector Bundles

A bundle is best understood as a kind of "twisted product" of two manifolds.

\[F = \text{fiber} \quad \rightarrow \quad E = \text{total space} \]

\[S^4 \times S^4 = T^2 \]

\[\Pi = \text{projection map} \]

\[B = \text{base space} \]

A product space is one example, but a trivial one. Formally, we have

Definition. A real vector bundle \(\xi \) over \(B \) consists of

1) a topological space \(E \) called the total space
2) a (continuous) map $\pi: E \to B$ called the projection map

3) for each $b \in B$ a vector space structure on $\pi^{-1}(b)$.

which obey the following conditions:

For each $b \in B$, \exists a neighborhood U, an integer n, and a homeomorphism

$$h: U \times \mathbb{R}^n \to \pi^{-1}(U)$$

so that for each $b \in U$, $x \mapsto h(b, x)$ is an isomorphism $\mathbb{R}^n \to \pi^{-1}(b)$.

We call (U, h) a local coordinate system for ξ about b.

If $U = B$, the bundle is trivial.

We call $\pi^{-1}(b)$ the fiber over b.
We usually assume that all fibers have the same dimension, \(n \), making \(\xi \) an \(n \)-plane bundle.

If everything is smooth and \(\varphi \) is a \textit{diffeomorphism}, then this is a \textit{smooth vector bundle}.

Definition. Two vector bundles over the same space are \textit{isomorphic} iff \(\exists \) a homeomorphism \(f : E(\xi_1) \rightarrow E(\xi_2) \) so that \(F_b(\xi_1) \xrightarrow{f} F_b(\xi_2) \) is an isomorphism for all \(b \).

Example. \(B \times \mathbb{R}^n \) is the trivial bundle over \(B \) if we let \(\pi(b, x) = b \) and take the vector space structure

\[
\pi^{-1}(b) = \{ (b, x) : x \in \mathbb{R}^n \}
\]

on \(\pi^{-1}(b) \).
Example. The tangent bundle, TM.

If the tangent bundle is trivial, we say M is parallelizable.

Example. T^2 is parallelizable (prove it!)

S^2 is not parallelizable (by $x
eq 0$)

so we have our first example of a nontrivial vector bundle in $T S^2$.

Example. If $M \subset \mathbb{R}^n$, we can define the normal bundle of M to be the subspace of $M \times \mathbb{R}^n$ of pairs (x, v) s.t. $v \perp T_x M$

This is usually denoted v.
Question. Is the normal bundle of S^2 trivial?

Question. Suppose you can embed M in \mathbb{R}^{n+1}. Does that mean that ν is trivial? Immerse?

Example. Define \mathbb{RP}^n as usual. The canonical line bundle over \mathbb{RP}^n is the \mathbb{R}-bundle given by the subset of $\mathbb{RP}^n \times \mathbb{R}^{n+1}$ of (x, ν) so that ν is a multiple of x.

We call this bundle γ^1_n.

It is clear that γ^1_n is locally trivial.

Theorem. If $n > 1$, γ^1_n is not trivial.

We will prove this using cross-sections.

Definition. A cross section s of E is a continuous function $s: B \to E$ which
maps \(b \mapsto F_b(\xi) \). The cross-section is nowhere zero if \(s(b) \neq 0 \) for all \(b \).

Note that a vector field is a cross-section of the tangent bundle.

Proof. The trivial bundle has a nowhere zero cross-section. So suppose \(s: \mathbb{R}P^n \to E(\gamma^n) \) is a cross-section. Consider

\[
f: S^n \to \mathbb{R}P^n \xrightarrow{s} E(\gamma^n).
\]

Now \(f(x) = (\xi \pm x, t(x)x) \) where \(t(x) \) is a continuous function of \(x \). And

\[
f(-x) = f(x), \text{ so } t(-x) = -t(x).
\]

Now \(S^n \) is connected, so \(t(x_0) = 0 \) for some \(x_0 \) on any path from \(x \) to \(-x\).
Explicit example. \mathcal{Y}_4.

We identify $\mathbb{R}P^2$ with the upper half-circle (with endpoints identified).

Note that over this interval we have an (open) strip, but the gluing reverses orientation on the boundary line.

Hence $\mathcal{Y}_4 = \text{open mobius strip}$, while the trivial $S^4 \times \mathbb{R}^4$ bundle is the cylinder.
Now suppose we have \(\xi \) a bunch of cross-sections \(\xi S_1, \ldots, S_n \xi \) of \(\xi \).

Definition. A collection \(\xi S_1, \ldots, S_n \xi \) of cross sections of \(\xi \) are **nowhere-dependent** if for each \(b \in B \), \(S_1(b), \ldots, S_n(b) \) are linearly independent.

Lemma. Let \(\xi, \eta \) be vector bundles over \(B \). If \(f: E(\xi) \to E(\eta) \) is continuous and maps each \(F_b(\xi) \) isomorphically onto \(F_b(\eta) \) then \(f \) is a homeomorphism and \(\xi \cong \eta \).

Proof. By assumption, \(\begin{array}{ccc} E & \xrightarrow{f} & E \\ \downarrow \pi & & \downarrow \pi \\ B & \xrightarrow{\text{commutes}} & B \end{array} \)

and \(f \) is 1-1, onto and continuous. It remains only to show \(f^{-1} \) is continuous, which follows from the fact that matrix inverses are cts.
Theorem. An \(\mathbb{R}^n \)-bundle \(\xi \) is trivial \(\iff \) it admits \(n \) cross-sections which are nowhere dependent.

Proof. Easy consequence of Lemma.

Examples.

\(S^1 \) and \(S^3 \) are parallelizable.

Euclidean vector bundles.

We can put a little more structure on our vector bundles by asking for an inner product (determined by a pos.def. quadratic form) on each vector space.

Definition. A Euclidean vector bundle is a real vector bundle together with a continuous function \(\mu : E(\xi) \to \mathbb{R} \).
which is quadratic on each fiber.

This is called a\textit{ Euclidean metric} on ξ, and if $\xi = \text{TM}$, a\textit{ Riemannian metric} on M.

Note that \mathbb{R}^n has the standard metric and the inclusion $\text{M} \hookrightarrow \mathbb{R}^n$ induces

\[\text{TM} \hookrightarrow \text{TR}^n \]

which makes any $\text{M} \subset \mathbb{R}^n$ Riemannian.

\underline{Lemma}. If ξ is a trivial n-plane bundle and ν is a Euclidean metric on ξ, then there exist orthonormal cross-sections s_1, \ldots, s_n.

\underline{Proof}. Continuity of \textit{Gram-Schmidt} orthogonalization.

\underline{Problems}. 2A-2B on p.23