Math 4250/6250 Homework #1

This homework assignment covers DoCarmo 1.1 - 1.5. It accompanies Lectures 1 and 2 in the course notes. Please pick 5 of the following 9 problems. Remember that undergraduate students should average one challenge problem per assignment, while graduate students should average two challenge problems per assignment.

1. REGULAR PROBLEMS

1. (Do Carmo, 1-3, #2) A circular disk of radius 1 in the xy plane rolls along the x axis without slipping. The curve described by a point on the rim of the disk is called a cycloid.
 (1) Find a parametrization $\alpha(t)$ of the cycloid.
 (2) Compute the arclength of the portion of the cycloid corresponding to one complete rotation of the disk.

2. (Do Carmo, 1-3, #4) The curve $\alpha(t) = \left(\sin t, \cos t + \log \tan \frac{t}{2} \right)$ is called the tractrix. Show that
 (1) α is a differentiable parametrized curve, regular except at $t = \pi/2$.
 (2) The length of the portion of the tangent line to the tractrix between $\alpha(t)$ and the y-axis is always equal to 1.

3. (Based on Do Carmo, 1-5, #3) Given a curve $\alpha(s)$ parametrized by arclength, consider the curve $T(s)$ on the unit sphere. This is called the tangent indicatrix of α. Prove that the speed of $T(s)$ is equal to the curvature of α. The curve $N(s)$ is called the normal indicatrix of $\alpha(s)$. Prove that the speed of $N(s)$ is equal to the length of the vector $(\kappa(s), \tau(s)) \in \mathbb{R}^2$. The curve $B(s)$ is called the binormal indicatrix. Prove that the speed of $B(s)$ is $|\tau(s)|$.

2. CHALLENGE PROBLEMS

1. (Do Carmo 1-3, #8). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a differentiable (that is, C^∞) regular curve and let $[a, b]$ be a closed interval. For every partition $P = a = t_0 < t_1 < \cdots < t_n = b$ of $[a, b]$, let
 \[\ell(P) = \sum |\alpha(t_{i+1}) - \alpha(t_i)|. \]
 Let the mesh of the partition be $|P| = \max t_{i+1} - t_i$. Prove that for any $\epsilon > 0$, there exists $\delta > 0$ so that if $|P| < \delta$ then
 \[\left| \int_a^b |\alpha'(t)| \, dt - \ell(P) \right| < \epsilon. \]
 That is, the lengths of polygons inscribed in the curve converge to the length of the curve.

2. (Based on Do Carmo 1-3, #10). Let $\alpha : I \rightarrow \mathbb{R}^3$ be a a differentiable parametrized curve. Suppose $[a, b] \in I$ and $\alpha(a) = p$ while $\alpha(b) = q$.
 (1) Show that for any constant vector v with $|v| = 1$,
 \[\langle q - p, v \rangle \int_a^b \langle \alpha'(t), v \rangle \, dt \leq \int_a^b |\alpha'(t)| \, dt. \]
(2) Let
\[v = \frac{q - p}{|q - p|} \]
and show that
\[|\alpha(b) - \alpha(a)| \leq \int_a^b |\alpha'(t)| \, dt. \]
That is, the curve of shortest length joining two points is the straight line!

3. Using the setup of the last problem, suppose that \(p \) lies in the plane \(z = 0 \) (that is, \(p = (p_1, p_2, 0) \)) and \(q \) lies in the plane \(z = 1 \) (that is, \(q = (q_1, q_2, 1) \)). Prove that the shortest curve joining any such \(p \) and \(q \) is the straight line joining \(p = (x, y, 0) \) to \(q = (x, y, 1) \).

4. Prove that a nonplanar curve with curvature \(\kappa(s) \) and torsion \(\tau(s) \) lies entirely on a sphere if and only if
\[\frac{\tau(s)}{\kappa(s)} = \frac{d}{ds \left(\frac{\kappa'(s)}{\tau(s)\kappa^2(s)} \right)} \]

5. If \(\gamma(s) \) is an arclength-parametrized curve with nonzero curvature, find a vector \(\omega(s) \), expressed as a linear combination of \(T, N, \) and \(B \) so that
\[T'(s) = \omega(s) \times T(s) \]
\[N'(s) = \omega(s) \times N(s) \]
\[B'(s) = \omega(s) \times B(s) \]
This vector is called the **Darboux vector**. Find a formula for the length of the Darboux vector in terms of the curvature \(\kappa(s) \) and torsion \(\tau(s) \) of the curve.