1. Let \(A \) be an \(m \times n \) matrix with \(m \geq n \) and suppose \(A \) has full rank. Show that the equation
\[
\begin{pmatrix}
I & A \\
A^T & 0 \\
\end{pmatrix}
\begin{pmatrix}
r \\
x \\
\end{pmatrix} = \begin{pmatrix}
b \\
0 \\
\end{pmatrix}
\]
has a solution where \(x \) minimizes \(\|Ax - b\|_2 \).

2. Assuming as above that \(A \) is an \(m \times n \) matrix with \(m \geq n \) with full rank, what is the condition number of
\[
\begin{pmatrix}
I & A \\
A^T & 0 \\
\end{pmatrix}
\]
in terms of the singular values of \(A \)? (Hint: Use the SVD of \(A \).)

3. Assuming as above that \(A \) is an \(m \times n \) matrix with \(m \geq n \) with full rank, find an explicit expression for the inverse of
\[
\begin{pmatrix}
I & A \\
A^T & 0 \\
\end{pmatrix}
\]
as a block \(2 \times 2 \) matrix. (Hint: Use \(2 \times 2 \) block Gaussian elimination.)

4. (Bonus) Show how to use the QR decomposition of \(A \) to implement an iterative refinement algorithm to improve the accuracy of the solution for \(x \) in
\[
\begin{pmatrix}
I & A \\
A^T & 0 \\
\end{pmatrix}
\begin{pmatrix}
r \\
x \\
\end{pmatrix} = \begin{pmatrix}
b \\
0 \\
\end{pmatrix}
\]

5. Suppose that \(A \) is an \(m \times n \) matrix with \(\text{SVD} \, A = U\Sigma V^T \). Compute the SVDs of the following matrices in terms of \(U \), \(\Sigma \), and \(V \):
 (1) \((A^T A)^{-1} \)
 (2) \((A^T A)^{-1} A^T \)
 (3) \(A(A^T A)^{-1} \)
 (4) \(A(A^T A)^{-1} A^T \)

6. (Constrained Least Squares) Suppose we want to find \(x \) minimizing \(\|Ax - b\|_2 \) subject to the linear constraint \(Cx = d \). Suppose that \(A \) is \(m \times n \), \(C \) is \(p \times n \), and \(C \) has full rank. Suppose also that \(p \leq n \) (so that we can guarantee that \(Cx = d \) has a solution) and \(n \leq m + p \) (so that the system is not underdetermined).
 (1) Show that if
 \[
 \begin{pmatrix}
 A \\
 C \\
 \end{pmatrix}
 \]
has full column rank, then there is a unique solution.
 (2) (Bonus) Show how to compute the solution \(x \) using two QR decompositions, some matrix-vector multiplications, and some solutions of triangular system of linear equations. Hint: Look at the LAPACK routine \texttt{sgglse}.