Math/Csci 4690/6690: Elementary properties of the graph Laplacian

In this minihomework, we will prove some of the basic properties of the graph Laplacian. First, recall from the notes that

Definition. The boundary map for a graph G is the $v \times e$ matrix defined by

$$\partial(e_i) = \text{head}(e_i) - \text{tail}(e_i)$$

The graph Laplacian L_G for a graph G is the symmetric $v \times v$ matrix defined by

$$L_G := \partial \partial^T.$$

We proved in the notes that for any vector $v \in \mathbb{R}^v$, we have

$$Q_{L_G}(v) = \langle v, L_G v \rangle = \sum_{i=1}^{e} \left(v_{\text{head}(e_i)} - v_{\text{tail}(e_i)}\right)^2.$$

1. (10 points) Suppose that G and G' have the same vertices and edges $v_1, \ldots, v_v = v'_1, \ldots, v'_v$ and $e_1, \ldots, e_e = e'_1, \ldots, e'_e$, but the orientations of the edges may not agree.
 Prove that $L_G = L_{G'}$.

2. (10 points) Recall that

Definition. The degree matrix D_G is the diagonal matrix whose entries are the degrees of the vertices v_1, \ldots, v_n, and the adjacency matrix M_G of G is the symmetric matrix defined by

$$(M_G)_{ij} = \begin{cases}
1, & \text{if } v_i \text{ and } v_j \text{ are joined by an edge} \\
0, & \text{if not.}
\end{cases}$$

3. (10 points) Let $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of the symmetric matrix L_G.

(1) (5 points) Prove that $\lambda_1 = 0$ by finding a vector $v \in \mathbb{R}^n$ so that $L_G v = 0$.

(2) (5 points)

Definition. A set S of vertices of G is called a component of G if there are no edges joining vertices in S to vertices outside S. The largest set of disjoint components S_1, \ldots, S_d of G are called the connected components of G.

Prove that if G has d connected components, then $\lambda_1 = \lambda_2 = \ldots = \lambda_d = 0$.

Hint: The S_i really partition G into d separate graphs G_1, \ldots, G_d.