Definition. The adjacency matrix of a graph G, denoted M_G, is the symmetric matrix where

$$(M_G)_{ij} = \begin{cases}
1, & \text{if } v_i \leadsto v_j \text{ is an edge of } G \\
0, & \text{if not.}
\end{cases}$$

We denote the eigenvalues of M_G by $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_\nu$.

Theorem. If S is any subgraph of G, $d_{\text{ave}}(S)$ is the average degree of vertices in the subgraph, and d_{max} is the maximum degree of any vertex in G, then

$$d_{\text{ave}}(S) \leq \mu_1 \leq d_{\text{max}}$$

Theorem. If G is connected and $\mu_1 = d_{\text{max}}$, then G is d_{max}-regular. If G is d-regular, then $\mu_1 = d$.

Definition. A coloring of a graph is an assignment of colors to vertices so that every edge joins vertices of different colors. A graph is k-colorable if a coloring exists with k colors. The chromatic number $\chi(G)$ of a graph is the smallest k for which G is k-colorable.

Theorem. For any graph G, $\chi(G) \leq \lceil \mu_1 \rceil + 1$.

Theorem. If $\mu_1 = -\mu_\nu$ then G is 2-colorable. If G is 2-colorable, then the eigenvalues $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_\nu$ are symmetric around 0.

1. (20 points) Consider the graph

1. Every vertex has degree d.
2. A graph which is 2-colorable is said to be bipartite.
(1) (10 points) Establish an upper bound on $\chi(G)$ by finding a coloring of G with as few colors as possible.
(2) (10 points) Prove that your upper bound is actually equal to $\chi(G)$ by using our theorems to show that no coloring with fewer colors exists. (If you need eigenvalues of M_G, it’s expected that you’ll use a computer to find them. This is an acceptable proof technique as long as you include screenshots.)
2. (10 points) Consider the graph

Find the best bounds on $\chi(G)$ that you can by explicitly finding colorings and using our theorems above. Can you compute $\chi(G)$ exactly?
3. (10 points) Consider the graph

Find as many eigenvalues of M_G as you can \textit{without} using a computer; prove that each number you give is actually an eigenvalue of G.