Alternatively, since \(\tan(\theta/2) = e^t \), we have
\[
\sin \theta = 2 \sin(\theta/2) \cos(\theta/2) = \frac{2e^t}{1 + e^{2t}} = \frac{2}{e^t + e^{-t}} = \text{sech} \ t
\]
\[
\cos \theta = \cos^2(\theta/2) - \sin^2(\theta/2) = \frac{1 - e^{2t}}{1 + e^{2t}} = \frac{e^{-t} - e^t}{e^t + e^{-t}} = -\tanh t,
\]
and so we can parametrize the tractrix instead by
\[
\beta(t) = (t - \tanh t, \tanh t), \quad t \geq 0. \quad \nabla
\]

The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If \(\alpha: [a, b] \rightarrow \mathbb{R}^3 \) is a parametrized curve, then for any \(a \leq t \leq b \), we define its arclength from \(a \) to \(t \) to be \(s(t) = \int_a^t \|\alpha'(u)\| \, du \). That is, the distance a particle travels—the arclength of its trajectory—is the integral of its speed.

An alternative approach is to start with the following

Definition. Let \(\alpha: [a, b] \rightarrow \mathbb{R}^3 \) be a (continuous) parametrized curve. Given a partition \(\mathcal{P} = \{a = t_0 < t_1 < \cdots < t_k = b\} \) of the interval \([a, b]\), let
\[
\ell(\alpha, \mathcal{P}) = \sum_{i=1}^k \|\alpha(t_i) - \alpha(t_{i-1})\|.
\]
That is, \(\ell(\alpha, \mathcal{P}) \) is the length of the inscribed polygon with vertices at \(\alpha(t_i), i = 0, \ldots, k \), as indicated in

Given this partition, \(\mathcal{P} \), of \([a, b]\),

![Diagram](https://example.com/diagram.png)

Figure 1.10

Figure 1.10. We define the arclength of \(\alpha \) to be
\[
\text{length}(\alpha) = \sup\{\ell(\alpha, \mathcal{P}) : \mathcal{P} \text{ a partition of } [a, b]\},
\]
provided the set of polygonal lengths is bounded above.

Now, using this definition, we can prove that the distance a particle travels is the integral of its speed. We will need to use the result of Exercise A.2.4.
Proposition 1.1. Let \(\alpha : [a, b] \rightarrow \mathbb{R}^3 \) be a piecewise-\(C^1 \) parametrized curve. Then

\[
\text{length}(\alpha) = \int_a^b \|\alpha'(t)\| \, dt.
\]

Proof. For any partition \(P \) of \([a, b]\), we have

\[
\ell(\alpha, P) = \sum_{i=1}^{k} \|\alpha(t_i) - \alpha(t_{i-1})\| = \sum_{i=1}^{k} \int_{t_{i-1}}^{t_i} \|\alpha'(t)\| \, dt \leq \sum_{i=1}^{k} \int_{t_{i-1}}^{t_i} \|\alpha'(t)\| \, dt = \int_a^b \|\alpha'(t)\| \, dt,
\]

so \(\text{length}(\alpha) \leq \int_a^b \|\alpha'(t)\| \, dt \). The corresponding inequality holds on any interval.

Now, for \(a \leq t \leq b \), define \(s(t) \) to be the arclength of the curve \(\alpha \) on the interval \([a, t]\). Then for \(h > 0 \) we have

\[
\frac{\|\alpha(t+h) - \alpha(t)\|}{h} \leq \frac{s(t+h) - s(t)}{h} \leq \frac{1}{h} \int_t^{t+h} \|\alpha'(u)\| \, du,
\]

since \(s(t+h) - s(t) \) is the arclength of the curve \(\alpha \) on the interval \([t, t+h]\). (See Exercise 8 for the first inequality and the first paragraph for the second.) Now

\[
\lim_{h \to 0^+} \frac{\|\alpha(t+h) - \alpha(t)\|}{h} = \|\alpha'(t)\| = \lim_{h \to 0^+} \frac{1}{h} \int_t^{t+h} \|\alpha'(u)\| \, du.
\]

Therefore, by the squeeze principle,

\[
\lim_{h \to 0^+} \frac{s(t+h) - s(t)}{h} = \|\alpha'(t)\|.
\]

A similar argument works for \(h < 0 \), and we conclude that \(s'(t) = \|\alpha'(t)\| \). Therefore,

\[
s(t) = \int_a^t \|\alpha'(u)\| \, du, \quad a \leq t \leq b,
\]

and, in particular, \(s(b) = \text{length}(\alpha) = \int_a^b \|\alpha'(t)\| \, dt \), as desired. \(\square \)

If \(\|\alpha'(t)\| = 1 \) for all \(t \in [a, b] \), i.e., \(\alpha \) always has speed 1, then \(s(t) = t - a \). We say the curve \(\alpha \) is parametrized by arclength if \(s(t) = t \) for all \(t \). In this event, we usually use the parameter \(s \in [0, L] \) and write \(\alpha(s) \).

Example 3. (a) Let \(\alpha(t) = (\frac{1}{2}(1 + t)^{3/2}, \frac{1}{3}(1 - t)^{3/2}, \frac{1}{\sqrt{2}}t), t \in (-1, 1) \). Then we have \(\alpha'(t) = (\frac{1}{2}(1 + t)^{1/2}, -\frac{1}{2}(1 - t)^{1/2}, \frac{1}{\sqrt{2}}) \), and \(\|\alpha'(t)\| = 1 \) for all \(t \). Thus, \(\alpha \) always has speed 1.

(b) The standard parametrization of the circle of radius \(a \) is \(\alpha(t) = (a \cos t, a \sin t), t \in [0, 2\pi] \), so \(\alpha'(t) = (-a \sin t, a \cos t) \) and \(\|\alpha'(t)\| = a \). It is easy to see from the chain rule that if we reparametrize the curve by \(\beta(s) = (a \cos(s/a), a \sin(s/a)), s \in [0, 2\pi a], \) then \(\beta'(s) = (-\sin(s/a), a \cos(s/a)) \) and \(\|\beta'(s)\| = 1 \) for all \(s \). Thus, the curve \(\beta \) is parametrized by arclength. \(\triangledown \)
An important observation from a theoretical standpoint is that any regular parametrized curve can be reparametrized by arclength. For if \(\alpha \) is regular, the arclength function \(s(t) = \int_a^t \| \alpha'(u) \| du \) is an increasing differentiable function (since \(s'(t) = \| \alpha'(t) \| > 0 \) for all \(t \)), and therefore has a differentiable inverse function \(t = t(s) \). Then we can consider the parametrization

\[
\beta(s) = \alpha(t(s)).
\]

Note that the chain rule tells us that

\[
\beta'(s) = \alpha'(t(s))t'(s) = \alpha'(t(s))/s'(t(s)) = \alpha'(t(s))/\|\alpha'(t(s))\|
\]
is everywhere a unit vector; in other words, \(\beta \) moves with speed 1.

EXERCISES 1.1

1. Parametrize the unit circle (less the point \((-1,0)\)) by the length \(t \) indicated in Figure 1.11.

![Figure 1.11](image)

2. Consider the helix \(\alpha(t) = (a \cos t, a \sin t, bt) \). Calculate \(\alpha'(t), \|\alpha'(t)\| \), and reparametrize \(\alpha \) by arclength.

3. Let \(\alpha(t) = \left(\frac{1}{\sqrt{3}} \cos t + \frac{1}{\sqrt{2}} \sin t, \frac{1}{\sqrt{3}} \cos t - \frac{1}{\sqrt{2}} \sin t \right) \). Calculate \(\alpha'(t), \|\alpha'(t)\| \), and reparametrize \(\alpha \) by arclength.

4. Parametrize the graph \(y = f(x), a \leq x \leq b \), and show that its arclength is given by the traditional formula

\[
\text{length} = \int_a^b \sqrt{1 + (f'(x))^2} \, dx.
\]

5. a. Show that the arclength of the catenary \(\alpha(t) = (t, \cosh t) \) for \(0 \leq t \leq b \) is \(\sinh b \).

 b. Reparametrize the catenary by arclength. (Hint: Find the inverse of \(\sinh \) by using the quadratic formula.)

6. Consider the curve \(\alpha(t) = (e^t, e^{-t}, \sqrt{2}t) \). Calculate \(\alpha'(t), \|\alpha'(t)\| \), and reparametrize \(\alpha \) by arclength, starting at \(t = 0 \).