**Proposition 4.4** (Clairaut's relation). The geodesics on a surface of revolution satisfy the equation

$$r\cos\phi = \text{const},$$

where r is the distance from the axis of revolution and  $\phi$  is the angle between the geodesic and the parallel. Conversely, any (constant speed) curve satisfying  $(\diamondsuit)$  that is not a parallel is a geodesic.

**Proof.** For the surface of revolution parametrized as in Example 9 of Section 2, we have E=1, F=0,  $G=f(u)^2, \Gamma_{uv}^v=\Gamma_{vu}^v=f'(u)/f(u), \Gamma_{vv}^u=-f(u)f'(u)$ , and all other Christoffel symbols are 0 (see Exercise 2.3.2d.). Then the system ( ) of differential equations becomes

$$(\dagger_1) u'' - ff'(v')^2 = 0$$

$$v'' + \frac{2f'}{f}u'v' = 0.$$

Rewriting the equation  $(\dagger_2)$  and integrating, we obtain

$$\frac{v''(t)}{v'(t)} = -\frac{2f'(u(t))u'(t)}{f(u(t))}$$

$$\ln v'(t) = -2\ln f(u(t)) + \text{const}$$

$$v'(t) = \frac{c}{f(u(t))^2},$$

so along a geodesic the quantity  $f(u)^2v' = Gv'$  is constant. We recognize this as the dot product of the tangent vector of our geodesic with the vector  $\mathbf{x}_v$ , and so we infer that  $\|\mathbf{x}_v\|\cos\phi = r\cos\phi$  is constant. (Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equation  $(\dagger_2)$  is equivalent to the condition  $r\cos\phi=$  const, provided we assume  $\|\alpha'\|^2=u'^2+Gv'^2$  is constant as well. But if

$$u'(t)^2 + Gv'(t)^2 = u'(t)^2 + f(u(t))^2v'(t)^2 = \text{const},$$

we differentiate and obtain

$$u'(t)u''(t) + f(u(t))^{2}v'(t)v''(t) + f(u(t))f'(u(t))u'(t)v'(t)^{2} = 0;$$

substituting for v''(t) using  $(\dagger_2)$ , we find

$$u'(t)(u''(t) - f(u(t))f'(u(t))v'(t)^{2}) = 0.$$

In other words, *provided*  $u'(t) \neq 0$ , a constant-speed curve satisfying  $(\dagger_2)$  satisfies  $(\dagger_1)$  as well. (See Exercise 6 for the case of the parallels.)

**Remark.** We can give a simple physical interpretation of Clairaut's relation. Imagine a particle with mass 1 constrained to move along a surface. If no external forces are acting, then the particle moves along a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case of our surface of revolution, the vertical component of the angular momentum  $\mathbf{L} = \boldsymbol{\alpha} \times \boldsymbol{\alpha}'$  is—surprise, surprise!— $f^2v'$ , which we've shown is constant. Perhaps some forces normal to the surface are required to keep the particle on the surface; then the particle still moves along a geodesic (why?). Moreover, since  $(\boldsymbol{\alpha} \times \mathbf{n}) \cdot (0,0,1) = 0$ , the resulting torques *still* have no vertical component.

Returning to our original motivation for geodesics, we now consider the following scenario. Choose  $P \in M$  arbitrary and a geodesic  $\gamma$  through P, and draw a curve  $C_0$  through P orthogonal to  $\gamma$ . We now choose a parametrization  $\mathbf{x}(u,v)$  so that  $\mathbf{x}(0,0) = P$ , the u-curves are geodesics orthogonal to  $C_0$ , and the v-curves are the orthogonal trajectories of the u-curves, as pictured in Figure 4.5. (It follows from Theorem



FIGURE 4.5

3.3 of the Appendix that we can do this on some neighborhood of P.)

In this parametrization we have F = 0 and E = E(u) (see Exercise 13). Now, if  $\alpha(t) = \mathbf{x}(u(t), v(t))$ ,  $a \le t \le b$ , is any path from  $P = \mathbf{x}(0, 0)$  to  $Q = \mathbf{x}(u_0, 0)$ , we have

length(
$$\alpha$$
) =  $\int_a^b \sqrt{E(u(t))u'(t)^2 + G(u(t), v(t))v'(t)^2} dt \ge \int_a^b \sqrt{E(u(t))}|u'(t)|dt$   
  $\ge \int_0^{u_0} \sqrt{E(u)} du$ ,

which is the length of the geodesic arc  $\gamma$  from P to Q. Thus, we have deduced the following.

**Proposition 4.5.** For any point Q on  $\gamma$  contained in this parametrization, any path from P to Q contained in this parametrization is at least as long as the length of the geodesic segment. More colloquially, geodesics are locally distance-minimizing.

**Example 7.** Why is Proposition 4.5 a local statement? Well, consider a great circle on a sphere, as shown in Figure 4.6. If we go more than halfway around, we obviously have not taken the shortest path.  $\nabla$ 



FIGURE 4.6

**Remark.** It turns out that any surface can be endowed with a *metric* (or *distance measure*) by defining the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise- $\mathbb{C}^1$  paths joining them. (Although the distance measure is different from the Euclidean distance as the surface sits in  $\mathbb{R}^3$ , the topology—notion of "neighborhood"—induced by this metric structure is the induced topology that the surface inherits as a subspace of  $\mathbb{R}^3$ .) It is a consequence of the Hopf-Rinow Theorem (see M. doCarmo, *Differential Geometry of Curves and Surfaces*, Prentice Hall, 1976, p. 333, or M. Spivak, A

Comprehensive Introduction to Differential Geometry, third edition, volume 1, Publish or Perish, Inc., 1999, p. 342) that in a surface in which every parametrized geodesic is defined for all time (a "complete" surface), every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing: To find the shortest path from P to Q, one walks around the "geodesic circle" of points a small distance from P and finds the point R on it closest to Q; one then proves that the unique geodesic emanating from P that passes through R must eventually pass through Q, and there can be no shorter path.

We referred earlier to two surfaces M and  $M^*$  as being globally isometric (e.g., in Example 6 in Section 1). We can now give the official definition: There should be a function  $f: M \to M^*$  that establishes a one-to-one correspondence and preserves distance—for any  $P, Q \in M$ , the distance between P and Q in M should be equal to the distance between f(P) and f(Q) in  $M^*$ .

## **EXERCISES 2.4**

- 1. Determine the result of parallel translating the vector (0,0,1) once around the circle  $x^2 + y^2 = a^2$ , z = 0, on the right circular cylinder  $x^2 + y^2 = a^2$ .
- 2. Prove that  $\kappa^2 = \kappa_g^2 + \kappa_n^2$ .
- 3. Suppose  $\alpha$  is a non-arclength-parametrized curve. Using the formula (\*\*) on p. 14, prove that the velocity vector of  $\alpha$  is parallel along  $\alpha$  if and only if  $\kappa_g = 0$  and  $\upsilon' = 0$ .
- \*4. Find the geodesic curvature  $\kappa_g$  of a latitude circle  $u=u_0$  on the unit sphere (see Example 1(d) on p. 37)
  - a. directly
  - b. by applying the result of Exercise 2
- 5. Consider the right circular cone with vertex angle  $2\phi$  parametrized by

$$\mathbf{x}(u,v) = (u \tan \phi \cos v, u \tan \phi \sin v, u), \quad 0 < u \le u_0, \ 0 \le v \le 2\pi.$$

Find the geodesic curvature  $\kappa_g$  of the circle  $u=u_0$  by using trigonometric considerations. Check that your answer agrees with the curvature of the circle you get by unrolling the cone to form a "pacman" figure, as shown on the left in Figure 4.7. (For a proof that these curvatures should agree, see Exercise 2.1.10 and Exercise 3.1.7.)

- 6. Check that the parallel  $u = u_0$  is a geodesic on the surface of revolution parametrized as in Proposition 4.4 if and only if  $f'(u_0) = 0$ . Give a geometric interpretation of and explanation for this result.
- 7. Use the equations (4), as in Example 3, to determine through what angle a vector turns when it is parallel-translated once around the circle  $u = u_0$  on the cone  $\mathbf{x}(u, v) = (u \cos v, u \sin v, cu), c \neq 0$ . (See Exercise 2.3.2c.)
- 8. a. Prove that if the surfaces M and  $M^*$  are tangent along the curve C, parallel translation along C is the same in both surfaces.