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Proposition 4.4 (Clairaut’s relation). The geodesics on a surface of revolution satisfy the equation

(}) r cos! D const;

where r is the distance from the axis of revolution and ! is the angle between the geodesic and the parallel.
Conversely, any (constant speed) curve satisfying (}) that is not a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in Example 9 of Section 2, we haveE D 1, F D 0,
G D f .u/2, " v

uv D " v
vu D f 0.u/=f .u/, " u

vv D !f .u/f 0.u/, and all other Christoffel symbols are 0 (see
Exercise 2.3.2d.). Then the system (||) of differential equations becomes

u00 ! ff 0.v0/2 D 0(#1)

v00 C
2f 0

f
u0v0 D 0:(#2)

Rewriting the equation (#2) and integrating, we obtain

v00.t/

v0.t/
D !

2f 0.u.t//u0.t/

f .u.t//

ln v0.t/ D !2 ln f .u.t//C const

v0.t/ D
c

f .u.t//2
;

so along a geodesic the quantity f .u/2v0 D Gv0 is constant. We recognize this as the dot product of the
tangent vector of our geodesic with the vector xv , and so we infer that kxvk cos ! D r cos ! is constant.
(Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equation (#2) is equivalent to the condition r cos! D const, provided
we assume k˛0k2 D u02 CGv02 is constant as well. But if

u0.t/2 CGv0.t/2 D u0.t/2 C f .u.t//2v0.t/2 D const;

we differentiate and obtain

u0.t/u00.t/C f .u.t//2v0.t/v00.t/C f .u.t//f 0.u.t//u0.t/v0.t/2 D 0I

substituting for v00.t/ using (#2), we find

u0.t/
!

u00.t/ ! f .u.t//f 0.u.t//v0.t/2
"

D 0:

In other words, provided u0.t/ ¤ 0, a constant-speed curve satisfying (#2) satisfies (#1) as well. (See
Exercise 6 for the case of the parallels.) !

Remark. We can give a simple physical interpretation of Clairaut’s relation. Imagine a particle with
mass 1 constrained to move along a surface. If no external forces are acting, then the particle moves along
a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case
of our surface of revolution, the vertical component of the angular momentum L D ˛ " ˛0 is—surprise,
surprise!—f 2v0, which we’ve shown is constant. Perhaps some forces normal to the surface are required
to keep the particle on the surface; then the particle still moves along a geodesic (why?). Moreover, since
.˛ " n/ # .0; 0; 1/ D 0, the resulting torques still have no vertical component.
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Returning to our original motivation for geodesics, we now consider the following scenario. Choose
P 2 M arbitrary and a geodesic ! through P , and draw a curve C0 through P orthogonal to !. We now
choose a parametrization x.u; v/ so that x.0; 0/ D P , the u-curves are geodesics orthogonal to C0, and the
v-curves are the orthogonal trajectories of the u-curves, as pictured in Figure 4.5. (It follows from Theorem
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FIGURE 4.5

3.3 of the Appendix that we can do this on some neighborhood of P .)
In this parametrization we have F D 0 and E D E.u/ (see Exercise 13). Now, if ˛.t/ D x.u.t/; v.t//,

a $ t $ b, is any path from P D x.0; 0/ toQ D x.u0; 0/, we have

length.˛/ D
Z b

a

q

E.u.t//u0.t/2 CG.u.t/; v.t//v0.t/2dt %
Z b

a

p

E.u.t//ju0.t/jdt

%
Z u0

0

p

E.u/du;

which is the length of the geodesic arc ! from P toQ. Thus, we have deduced the following.

Proposition 4.5. For any point Q on ! contained in this parametrization, any path from P to Q con-
tained in this parametrization is at least as long as the length of the geodesic segment. More colloquially,
geodesics are locally distance-minimizing.

Example 7. Why is Proposition 4.5 a local statement? Well, consider a great circle on a sphere, as
shown in Figure 4.6. If we go more than halfway around, we obviously have not taken the shortest path.
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FIGURE 4.6

Remark. It turns out that any surface can be endowed with a metric (or distance measure) by defining
the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise-
C

1 paths joining them. (Although the distance measure is different from the Euclidean distance as the
surface sits in R3, the topology—notion of “neighborhood”—induced by this metric structure is the induced
topology that the surface inherits as a subspace of R3.) It is a consequence of the Hopf-Rinow Theorem (see
M. doCarmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976, p. 333, or M. Spivak, A
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Comprehensive Introduction to Differential Geometry, third edition, volume 1, Publish or Perish, Inc., 1999,
p. 342) that in a surface in which every parametrized geodesic is defined for all time (a “complete” surface),
every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing:
To find the shortest path from P to Q, one walks around the “geodesic circle” of points a small distance
from P and finds the point R on it closest to Q; one then proves that the unique geodesic emanating from
P that passes through R must eventually pass through Q, and there can be no shorter path.

We referred earlier to two surfacesM andM ! as being globally isometric (e.g., in Example 6 in Section
1). We can now give the official definition: There should be a function f WM !M ! that establishes a one-
to-one correspondence and preserves distance—for any P;Q 2 M , the distance between P and Q in M
should be equal to the distance between f .P / and f .Q/ inM !.

EXERCISES 2.4

1. Determine the result of parallel translating the vector .0; 0; 1/ once around the circle x2 C y2 D a2,
z D 0, on the right circular cylinder x2 C y2 D a2.

2. Prove that $2 D $2
g C $2

n .

3. Suppose ˛ is a non-arclength-parametrized curve. Using the formula (&&) on p. 14, prove that the
velocity vector of ˛ is parallel along ˛ if and only if $g D 0 and % 0 D 0.

*4. Find the geodesic curvature $g of a latitude circle u D u0 on the unit sphere (see Example 1(d) on
p. 37)
a. directly
b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex angle 2! parametrized by

x.u; v/ D .u tan! cos v; u tan ! sin v; u/; 0 < u $ u0; 0 $ v $ 2& :

Find the geodesic curvature $g of the circle u D u0 by using trigonometric considerations. Check that
your answer agrees with the curvature of the circle you get by unrolling the cone to form a “pacman”
figure, as shown on the left in Figure 4.7. (For a proof that these curvatures should agree, see Exercise
2.1.10 and Exercise 3.1.7.)

6. Check that the parallel u D u0 is a geodesic on the surface of revolution parametrized as in Proposition
4.4 if and only if f 0.u0/ D 0. Give a geometric interpretation of and explanation for this result.

7. Use the equations (|), as in Example 3, to determine through what angle a vector turns when it is
parallel-translated once around the circle u D u0 on the cone x.u; v/ D .u cos v; u sin v; cu/, c ¤ 0.
(See Exercise 2.3.2c.)

8. a. Prove that if the surfacesM andM ! are tangent along the curve C , parallel translation along C is
the same in both surfaces.


