Math 5200: Active Learning.
Orbits of the delightful dozen.

Recall our definition from the video:
Definition. The orbit of a vector v € R" under the action of a group of matrices 9 is the set

orbit(v,¥9) = {x s.t. x=Av,A € ¥}

and our definition from class:
Definition. The set . C R" has a symmetry given by an n X n orthogonal matrix A if
AY ={Axst.xe S} =

Putting these two together, it’s immediate that

Proposition. If ¥ is a subgroup of the group of orthogonal matrices O(n) and v € R", then every
M € 9 is a symmetry of orbit(v,9).

This means that a good way to construct interesting symmetric sets is to combine orbits of
points under subgroups of O(n). In fact, if ¢ is a finite subgroup of O(n), we call it a “point
group” to emphasize this connection. We note that the number of points in orbit(v,¥) is at most
the number of matrices in ¢.

Definition. Let
1 1 —1 —1
c=|1{, d=|-1|, e=|[1]|, f=[—-1
—1 —1 1
The set V :={c,d,e,f} forms a tetrahedron.

Here’s a series of pictures showing the tetrahedron:




1. We are now going to use the point group ¢ from the last homework, so please get out your
previous active learning assignment with the list of twelve matrices. Also, load up desmos and
define the matrices A and B as well as the column vectors C, D, E and F[]

We’re going to classify each of the matrices in our list of twelve by working out what it does
to the vectors ¢, d, e and f. For example,

[0 1 0] [1 1 010 1 —1
Ac= |0 0 1| (1| =]1| =¢ Ad=(0 O 1| [-1|=|[-1| =f
|1 0 0f [1 1 1 0 0] |—-1 1
[0 1 0] [—1 1 01 0f [—1 —1
Ae= |0 0 1 1| =|-1| =d Af=10 0 1| |—-1|=]11|=e
|1 0 0 [—1 -1 1 00 1 -1

To stay organized, write the matrices in dictionary order.

Matrix Name

1 c— ¢ d— d e— e f— f

A c— ¢ d— f e— d f— e

B c— d— e— f—

. c— _  d- e A

. c— _  d-~ e A
c— d— e— f—
(e d— e— f—

o c— _ d- e A=
c—> d— e— f—
c— d— e— f—
c— d— e— f—

- c— _ d-» e _ f=

“To do matrix-vector multiplication in the desmos calculator, write the vector ¢ as a 3 x 1 matrix. Then you can
multiply AC and BC (and so forth) by typing these into desmos as usual.

2



2. We know from the video some of the matrices in & are 120° or 240° rotations around the axes
¢, d, e and f. Using your table above, you can find all of them by figuring out which matrices
fix ¢, and which fix d and so forth. You should find 9 such matrices total, in four groups of

three@

(1) Find all the matrices where ¢ — ¢ and describe what happens to d, e, and f.

Example Solution:

The matrix / takese —candd —d,e — e, f—f.
The matrix A takesc —candd —f— e — d.
The matrix AA takesec —candd — e —f—d.

(2) Find all the matrices where d — d and describe what happens to c, e, and f.

(3) Find all the matrices where e — e and describe what happens to ¢, d, and f.

(4) Find all the matrices where f — f and describe what happens to ¢, d, and e.

bThe matrix I fixes all vectors (it’s a “rotation by 0 degrees around every axis”) so it’s listed in each group. Thus
there are only 9 different matrices among the 12 you’ll list below.



3. On the other hand, the remaining matrices in ¢ are 180° rotations around the coordinate axes[]
These have a different effect on the “axes” ¢, d, e and f. You should find 4 such matrices, in
three groups of twoﬂ

(1) Find all matrices in ¢ which send e; — e and determine what they do to ¢, d, e and f.

Example Solution:

The matrix / takese; —>e;andc —~candd —d,e e, f—f.
The matrix B takes e; — e and swaps both ¢ <+ d and e < f.

(2) Find all matrices in ¢ which send e, — e, and determine what they do to ¢, d, e and f.

(3) Find all matrices in ¢ which send e3 — e3 and determine what they do to ¢, d, e and f.

1 0 0
€Of course, the easiest way to do this is to define the vectors e; = (0|, e; = [1| and e3 = |0| in desmos and
0 0 1

multiply them by various combinations of A’s and B’s from our list of matrices in ¢ until you win!
4 Again, the identity matrix is going to be in each group, so there are really only four unique matrices you’re going
to find among the six total.



4. Notice that we’ve now shown that Mx € ¥ for each M € ¢4 and x € #'. In the process,
you’ve proved orbit(c,%) = 7 and hence that the set ¥ has every M € ¢ as a symmetry[| To
understand this orbit geometrically, it will help to know another useful fact about orthogonal
matrices:

Proposition. If A is an orthogonal n x n matrix and v, w are any vectors in R", then v-w =
Av-Aw. It follows that ||v|| = ||Av|| for any v € R", and hence that

|Av —Aw|| = [lv —w]|
for any v,w € R", and further that Zvw = ZAVAW for any v, w € R".

We now want to proveﬂthat for any x #y and w # z in ¥, we have ||x —y|| = |w —z]|.

Let’s consider the edge of the tetrahedron given by {c, e}, shown in red below left and the edge
{c,f} shown in red below right.

-1 e

1

If we can show that there’s an orthogonal matrix so that {Ac,Ae} = {c,e}, we’ll have proved
that [[c—e| = |lc —f]].

(1) Find a matrix M € ¢ so that {Mc,Me} = {c,f}.

Example Solution:

Looking at the picture, we can see that rotating around ¢ by 120° or 240° ought to do this;
looking at our table of matrices which rotate around ¢, we see that AA takes ¢ — ¢ and
e — f, so this will do.

¢We haven’t proved that these are the only symmetries of ¥ because, well, it’s not true: there are reflection
symmetries that aren’t in ¢.

1Of course, we could list the 6 = (‘2‘) pairs of (different) points among the four points in ¥ = {c,d,e,f} and just
compute each distance; we know the coordinates of ¢, d, e, and f. But we want to do this in a way that’s more respectful
of the symmetry structure.



(2) Find a matrix M € ¢ so that {Mc,Me} = {c,d}.

(3) Find a matrix M € ¢ so that {Mc,Me} = {d,e}.

(4) Find a matrix M € ¢ so that {Mc,Me} = {e,f}.

(5) Find a matrix M € ¢ so that {Mc,Me} = {f,d}.




