
On the Minimum Ropelength of Knots and Links

Jason Cantarella
�
, Robert B. Kusner

�
, John M. Sullivan

�
�

University of Georgia, Athens, e-mail: cantarel@math.uga.edu�
University of Massachusetts, Amherst, e-mail: kusner@math.umass.edu�
University of Illinois, Urbana, e-mail: jms@math.uiuc.edu

Received: April 2, 2001, and in revised form February 22, 2002.

Abstract. The ropelength of a knot is the quotient of its length by its thick-
ness, the radius of the largest embedded normal tube around the knot. We
prove existence and regularity for ropelength minimizers in any knot or link
type; these are

� ���	�
curves, but need not be smoother. We improve the lower

bound for the ropelength of a nontrivial knot, and establish new ropelength
bounds for small knots and links, including some which are sharp.

Introduction

How much rope does it take to tie a knot? We measure the ropelength of a
knot as the quotient of its length and its thickness, the radius of the largest
embedded normal tube around the knot. A ropelength-minimizing configu-
ration of a given knot type is called tight.

Tight configurations make interesting choices for canonical representa-
tives of each knot type, and are also referred to as “ideal knots”. It seems
that geometric properties of tight knots and links are correlated well with
various physical properties of knotted polymers. These ideas have attracted
special attention in biophysics, where they are applied to knotted loops of
DNA. Such knotted loops are important tools for studying the behavior
of various enzymes known as topoisomerases. For information on these
applications, see for instance [Sum,SKB 
 ,KBM 
 ,KOP 
 ,DS1,DS2,CKS,
LKS 
 ] and the many contributions to the book Ideal Knots [SKK].

In the first section of this paper, we show the equivalence of various
definitions that have previously been given for thickness. We use this to
demonstrate that in any knot or link type there is a ropelength minimizer,
and that minimizers are necessarily

� ���	�
curves (Theorem 7).



2 Jason Cantarella et al.

Fig. 1. A simple chain of ����� rings, the connect sum of ����� Hopf links, can be built from
stadium curves (with circles at the ends). This configuration has ropelength 	�

����
��������
and is tight by Theorem 10; it shows that ropelength minimizers need not be � �

.

The main results of the paper are several new lower bounds for rope-
length, proved by considering intersections of the normal tube and a span-
ning surface. For a link of unit thickness, if one component is linked to �
others, then its length is at least �������! , where �" is the length of the
shortest curve surrounding � disjoint unit-radius disks in the plane (Theo-
rem 10). This bound is sharp in many simple cases, allowing us to construct
infinite families of tight links, such as the simple chain shown in Figure 1.
The only previously known example of a tight link was the Hopf link built
from two round circles, which was the solution to the Gehring link prob-
lem [ES,Oss,Gag]. Our new examples show that ropelength minimizers
need not be

� �
, and need not be unique.

Next, if one component in a unit-thickness link has total linking num-
ber � with the other components, then its length is at least ���#�$���&% � , by
Theorem 11. We believe that this bound is never sharp for �('*) . We ob-
tain it by using a calibration argument to estimate the area of a cone surface
spanning the given component, and the isoperimetric inequality to convert
this to a length bound. For links with linking number zero, we need a differ-
ent approach: here we get better ropelength bounds (Theorem 21) in terms
of the asymptotic crossing number of Freedman and He [FH].

Unit-thickness knots have similar lower bounds on length, but the esti-
mates are more intricate and rely on two additional ideas. In Theorem 18,
we prove the existence of a point from which any nontrivial knot has cone
angle at least +,� . In Section 5, we introduce the parallel overcrossing
number of a knot, which measures how many times it crosses over a par-
allel knot: we conjecture that this equals the crossing number, and we
prove it is at least the bridge number (Proposition 14). Combining these
ideas, we show (Theorem 19) that any nontrivial knot has ropelength at
least +,�-�.��� % �0/21436587��9/2�:)�3;+=< . The best previously known lower
bound [LSDR] was <��>/?)@<43BA4) . Computer experiments [SDKP] using
Pieranski’s SONO algorithm [Pie] suggest that the tight trefoil has rope-
length around 78�436181 . Our improved estimate still leaves open the old ques-
tion of whether any knot has ropelength under �C+ , that is: Can a knot be
tied in one foot of one-inch (diameter) rope?
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1. Definitions of Thickness

To define the thickness of a curve, we follow the paper [GM] of Gonza-
lez and Maddocks. Although they considered only smooth curves, their
definition (unlike most earlier ones, but see [KS]) extends naturally to the
more general curves we will need. In fact, it is based on Menger’s notion
(see [BM, � 10.1]) of the three-point curvature of an arbitrary metric space.

For any three distinct points � , � , � in � �
, we let �����
	���	
��� be the radius

of the (unique) circle through these points (setting ����� if the points are
collinear). Also, if ��� is a line through � , we let ��������	���� be the radius of
the circle through � tangent to ��� at � .

Now let � be a link in � �
, that is, a disjoint union of simple closed

curves. For any ����� , we define the thickness ����� � of � in terms of a
local thickness �!�"���#� at �$�%� :

����� � &'�)(+*�,�.-./ �0�����#�1	 �0����� � &'� (+*�,2 � 3 -./�546 2 46 3 46 �
�����7	��8	
�5� 3

To apply this definition to nonembedded curves, note that we consider only
triples of distinct points �7	��8	
�9�:� �

. We will see later that a nonembedded
curve must have zero thickness unless its image is an embedded curve,
possibly covered multiple times.

Note that any sphere cut three times by � must have radius greater than
����� � . This implies that the closest distance between any two components
of � is at least �.� , as follows: Consider a sphere whose diameter achieves
this minimum distance; a slightly larger sphere is cut four times.

We usually prefer not to deal explicitly with our space curves as maps
from the circle. But it is important to note that below, when we talk about
curves being in class

�<; � =
, or converging in

�<;
to some limit, we mean

with respect to the constant-speed parametrization on the unit circle.
Our first two lemmas give equivalent definitions of thickness. The first

shows that the infimum in the definition of �����#� is always attained in a
limit when (at least) two of the three points approach each other. Thus, our
definition agrees with one given earlier by Litherland et al. [LSDR] for
smooth curves. If �?>���@�A� and �CBD� is perpendicular to both E7�F� and
E 2 � , then we call G �HB@��G a doubly critical self-distance for � .

Lemma 1. Suppose � is
� �

, and let E � � be its tangent line at �$�C� . Then
the thickness is given by

����� �I� (+*�,�546 2 -J/ ���KE8�F�L	���� 3

This equals the infimal radius of curvature of � or half the infimal doubly
critical self-distance, whichever is less.

Proof. The infimum in the definition of thickness either is achieved for
some distinct points � , � , � , or is approached along the diagonal when � ,
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say, approaches � , giving us ���KE � �L	���� . But the first case cannot happen
unless the second does as well: consider the sphere of radius �H� �����7	��8	
�5�
with � , � and � on its equator, and relabel the points if necessary so that
� and � are not antipodal. Since this � is infimal, � must be tangent to the
sphere at � . Thus ���KE �F�L	���� � � , and we see that ����� �<� (+*�,"���KE �.� 	���� .
This infimum, in turn, is achieved either for some � >� � , or in a limit as
��� � (when it is the infimal radius of curvature). In the first case, we can
check that � and � must be antipodal points on a sphere of radius � , with �
tangent to the sphere at both points. That means, by definition, that �.� is a
doubly critical self-distance for � . ��

A version of Lemma 1 for smooth curves appeared in [GM]. Similar
arguments there show that the local thickness can be computed as

�0����� � � (+*�,2 46 � ���KE 2 �L	�� � 3

Lemma 2. For any
� �

link � , the thickness of � equals the reach of � ; this
is also the normal injectivity radius of � .

The reach of a set � in � �
, as defined by Federer [Fed], is the largest �

for which any point � in the � -neighborhood of � has a unique nearest point
in � . The normal injectivity radius of a

� �
link � in � �

is the largest �
for which the union of the open normal disks to � of radius � forms an
embedded tube.

Proof. Let � , � , and � be the thickness, reach, and normal injectivity radius
of � . We will show that � � � � � � � .

Suppose some point � has two nearest neighbors � and � at distance � .
Thus � is tangent at � and � to the sphere around � , so a nearby sphere
cuts � four times, giving � � � .

Similarly, suppose some � is on two normal circles of � of radius � .
This � has two neighbors on � at distance � , so � � � .

We know that � is less than the infimal radius of curvature of � . Further-
more, the midpoint of a chord of � realizing the infimal doubly self-critical
distance of � is on two normal disks of � . Using Lemma 1, this shows that
� � � , completing the proof. ��

If � has thickness � '
	 , we will call the embedded (open) normal tube
of radius � around � the thick tube around � .

We define the ropelength of a link � to be �
�!*����#���J����� � , the (scale-
invariant) quotient of length over thickness. Every curve of finite roplength
is

� ���	�
, by Lemma 4 below. Thus, we are free to restrict our attention

to
� ���	�

curves, rescaled to have (at least) unit thickness. This means they
have embedded unit-radius normal tubes, and curvature bounded above
by ) . The ropelength of such a curve is (at most) its length.
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Fig. 2. These elbow curves consist of straight segments connected by a circular arc of unit
radius. No matter how small the angle of the arc is, the curve has unit thickness, as demon-
strated by the maximal embedded normal neighborhoods shown. These � ��� �

curves con-
verge in � �

to a straight segment, with infinite thickness.

2. Existence and Regularity of Ropelength Minimizers

We want to prove that, within every knot or link type, there exist curves of
minimum ropelength. The lemma below allows us to use the direct method
to get minimizers. If we wanted to, we could work with

� �
convergence

in the space of
� ���	�

curves, but it seems better to state the lemma in this
stronger form, applying to all rectifiable links.

Lemma 3. Thickness is upper semicontinuous with respect to the
���

topol-
ogy on the space of

��� �	�
curves.

Proof. This follows immediately from the definition, since �����7	��8	
�5� is a
continuous function (from the set of triples of distinct points in space)
to � 	"	1� � . For, if curves ��� approach � , and �����
	���	
��� nearly realizes the
thickness of � , then nearby triples of distinct points bound from above the
thicknesses of the ��� . ��

This proof (compare [KS]) is essentially the same as the standard one
for the lower semicontinuity of length, when length of an arbitrary curve
is defined as the supremal length of inscribed polygons. Note that thick-
ness can jump upwards in a limit, even when the convergence is

� �
. For

instance, we might have an elbow consisting of two straight segments con-
nected by a unit-radius circular arc whose angle decreases to zero, as shown
in Figure 2.

When minimizing ropelength within a link type, we care only about
links of positive thickness �-' 	 . We next prove three lemmas about such
links. It will be useful to consider the secant map � for a link � , defined,
for � >� � �C� , by

� ���
	����#&'�
	 �HBA�
G �HBA� G � �&�

�
3

Note that as � � � , the limit of � ���7	���� , if it exists, is the tangent line E 2 � .
Therefore, the link is

� �
exactly if � extends continuously to the diago-

nal � in �
� � , and is
� ���	�

exactly when this extension is Lipschitz. When
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Fig. 3. The secant map for a thick knot is Lipschitz by
Lemma 4: when � and � are close along the knot, the se-
cant directions ��� and ��� are close. Here ����� 		��
���

� �
is an upper bound for the thickness of the knot.

speaking of particular Lipschitz constants we use the following metrics:
on � �$� , we sum the (shorter) arclength distances in the factors; on �!� �
the distance between two points is

� ���
(+*�� , where � is the angle between
(any) lifts of the points to � �

.

Lemma 4. If � has thickness � ' 	 , then its secant map � has Lipschitz
constant ) ���.� . Thus � is

� ���	�
.

Proof. We must prove that � has Lipschitz constant ) ���.� on ��� � � ��� � ;
it then has a Lipschitz extension. By the triangle inequality, it suffices to
prove, for any fixed � �C� , that

��� � ���
	����1	 �L���7	
�5��� � G �IB ��G ���.� whenever
� and � are sufficiently close along � . Setting � &'���#� ��� , we have

� � � ���
	����1	 �L���7	
�5� � ���
( *��<� G ��BA�8G
� �����7	��8	
�5�

� G � BA��G
�.� 	

using the law of sines and the definition �:&'�?( *�,"� . ��
Although we are primarily interested in links (embedded curves), we

note that Lemma 4 also shows that a nonembedded curve � must have
thickness zero, unless its image is contained in some embedded curve. For
such a curve � contains some point � where at least three arcs meet, and at
least one pair of those arcs will fail to join in a

� ���	�
fashion at � .

Lemma 5. If � is a link of thickness �-' 	 , then any points �7	�� �@� with
G �HBA� G��(�.� are connected by an arc of � of length at most

�.� ��!#"$�
(+* G � B@��G�.�
� �
� G �HBA� GB3

Proof. The two points � and � must be on the same component of � , and
one of the arcs of � connecting them is contained in the ball with diame-
ter ��� . By Lemma 1, the curvature of � is less than ) �J� . Thus by Schur’s
lemma, the length of this arc of � is at most �.� ��!#"$�
(+*��
G � B � G ���.��� , as
claimed. Note that Chern’s proof [Che] of Schur’s lemma for space curves,
while stated only for

� �
curves, applies directly to

� ���	�
curves, which have

Lipschitz tantrices on the unit sphere. (As Chern notes, the lemma actually
applies even to curves with corners, when correctly interpreted.) ��
Lemma 6. Suppose � � is a sequence of links of thickness at least �(' 	 ,
converging in

� �
to a limit link � . Then the convergence is actually

� �
,

and � is isotopic to (all but finitely many of) the � � .
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Proof. To show
� �

convergence, we will show that the secant maps of
the � � converge (in

� �
) to the secant map of � . Note that when we talk

about convergence of the secant maps, we view them (in terms of constant-
speed parametrizations of the � � ) as maps from a common domain. Since
these maps are uniformly Lipschitz, it suffices to prove pointwise conver-
gence.

So consider a pair of points � , � in � . Take � � G �DB���G . For large
enough � , � � is within �

� ��� of � in
� �

, and hence the corresponding points
� � , � � in � � have G � �IB � G ���

� ��� and G � �IB���G ���
� ��� . We have moved

the endpoints of the segment ��� by relatively small amounts, and expect its
direction to change very little. In fact, the angle � between � � B�� � and � B��
satisfies �
(+*�� ����� � ��� �	� � ��� ���
� ��� . That is, the distance in �&� �

between
the points � ��� � � 	�� � � and � � �
	��F� is given by �
(+*�� ��� .

Therefore, the secant maps converge pointwise, which shows that the � �
converge in

� �
to � . Since the limit link � has thickness at least � by

Lemma 3, it is surrounded by an embedded normal tube of diameter � .
Furthermore, all (but finitely many) of the � � lie within this tube, and by� �

convergence are transverse to each normal disk. Each such � � is isotopic
to � by a straight-line homotopy within each normal disk. ��

Our first theorem establishes the existence of tight configurations (rope-
length minimizers) for any link type. This problem is interesting only for
tame links: a wild link has no

� ���	�
realization, so its ropelength is always

infinite.

Theorem 7. There is a ropelength minimizer in any (tame) link type; any
minimizer is

� ���	�
, with bounded curvature.

Proof. Consider the compact space of all
� ���	�

curves of length at most ) .
Among those isotopic to a given link � � , find a sequence ��� supremiz-
ing the thickness. The lengths of � � approach ) , since otherwise rescaling
would give thicker curves. Also, the thicknesses approach some � ' 	 ,
the reciprocal of the infimal ropelength for the link type. Replace the se-
quence by a subsequence converging in the

� �
norm to some link � . Be-

cause length is lower semicontinuous, and thickness is upper semicontinu-
ous (by Lemma 3), the ropelength of � is at most ) �J� . By Lemma 6, all but
finitely many of the � � are isotopic to � , so � is isotopic to � � .

By Lemma 4, tight links must be
� ���	�

, since they have positive thick-
ness. ��

This theorem has been extended by Gonzalez et al. [GM+], who mini-
mize a broad class of energy functionals subject to the constraint of fixed
thickness. See also [GdlL].

Below, we will give some examples of tight links which show that
� �

regularity cannot be expected in general, and that minimizers need not be
unique.
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3. The Ropelength of Links

Suppose in a link � of unit thickness, some component � is topologically
linked to � other components � � . We will give a sharp lower bound on the
length of � in terms of � . When every component is linked to � � < others,
this sharp bound lets us construct tight links.

To motivate the discussion below, suppose � was a planar curve, bound-
ing some region � in the plane. Each � � would then have to puncture � .
Since each � � is surrounded by a unit-radius tube, these punctures would
be surrounded by disjoint disks of unit radius, and these disks would have
to avoid a unit-width ribbon around � . It would then be easy to show that
the length of � was at least ��� more than �  , the length of the shortest
curve surrounding � disjoint unit-radius disks in the plane.

To extend these ideas to nonplanar curves, we need to consider cones.
Given a space curve � and a point � � � �

, the cone over � from � is
the disk consisting of all line segments from � to points in � . The cone
is intrinsically flat away from the single cone point � , and the cone angle
is defined to be the angle obtained at � if we cut the cone along any one
segment and develop it into the Euclidean plane. Equivalently, the cone
angle is the length of the projection of � to the unit sphere around � . Note
that the total Gauss curvature of the cone surface equals ��� minus this cone
angle.

Our key observation is that every space curve may be coned to some
point � in such a way that the intrinsic geometry of the cone surface is Eu-
clidean. We can then apply the argument above in the intrinsic geometry
of the cone. In fact, we can get even better results when the cone angle
is greater than ��� . We first prove a technical lemma needed for this im-
provement. Note that the lemma would remain true without the assump-
tions that � is

� ���	�
and has curvature at most ) . But we make use only

of this case, and the more general case would require a somewhat more
complicated proof.

Lemma 8. Let � be an infinite cone surface with cone angle ��� ��� (so
that � has nonpositive curvature and is intrinsically Euclidean away from
the single cone point). Let � be a subset of � which includes the cone point,
and let � be a lower bound for the length of any curve in � surrounding � .
Consider a

� ���	�
curve � in � with geodesic curvature bounded above by ) .

If � surrounds � while remaining at least unit distance from � , then � has
length at least � � � .
Proof. We may assume that � has nonnegative geodesic curvature almost
everywhere. If not, we simply replace it by the boundary of its convex hull
within � , which is well-defined since � has nonpositive curvature. This
boundary still surrounds � at unit distance, is

� ���	�
, and has nonnegative

geodesic curvature.
For � � ) , let ��� denote the inward normal pushoff, or parallel curve

to � , at distance � within the cone. Since the geodesic curvature of �
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Fig. 4. Two views of the same cone, whose cone angle is precisely � � , on a symmetric
trefoil knot.

is bounded by ) , these are all smooth curves, surrounding � and hence
surrounding the cone point. If ��� denotes the geodesic curvature of � � in
� , the formula for first variation of length is�

� � �
�!*
� � � �I� B
����� � �	� � ��B ��	

where the last equality comes from Gauss–Bonnet, since � is intrinsically
flat except at the cone point. Thus � �!*�� �@�$� � �!*7� � � � � ��� ; since � �
surrounds � for every � � ) , it has length at least � , and we conclude that
�
�!*
� �@� � �&� � . ��
Lemma 9. For any closed curve � , there is a point � such that the cone
over � from � has cone angle ��� . When � has positive thickness, we can
choose � to lie outside the thick tube around � .

Proof. Recall that the cone angle at � is given by the length of the radial
projection of � onto the unit sphere centered at � . If we choose � on a chord
of � , this projection joins two antipodal points, and thus must have length
at least ��� . On any doubly critical chord (for instance, the longest chord)
the point � at distance ��� �@� from either endpoint must lie outside the thick
tube, by Lemma 2.

Note that the cone angle approaches 	 at points far from � . The cone
angle is a continuous function on the complement of � in � �

, a connected
set. When � has positive thickness, even the complement of its thick tube
is connected. Thus if the cone angle at � is greater than ��� , the intermediate
value theorem lets us choose some � (outside the tube) from which the cone
angle is exactly ��� . Figure 4 shows such a cone on a trefoil knot. ��

Our first ropelength bound will be in terms of a quantity we call �  ,
defined to equal the shortest length of any plane curve enclosing � disjoint
unit disks. Considering the centers of the disks, using Lemma 8, and scaling
by a factor of � , we see that �  � ��� � ��
  , where 
  is the length of the
shortest curve enclosing � points separated by unit distance in the plane.
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� � � �
��� � � � ����
 � �����

� 
��� � ��� �
Fig. 5. The shortest curve enclosing � unit disks in the plane has length

� �
, and is unique

for �	� 
 . For � ��
 , there is a one-parameter family of equally short curves.

For small � it is not hard to determine 
  and �" explicitly from the
minimizing configurations shown in Figure 5. Clearly � � � ��� , while for
� � � � < , we have �  A� ��� � �C� since 
  A� � . Note that the least-
perimeter curves in Figure 5 are unique for � � + , but for � � + there
is a continuous family of minimizers. For � �*< there is a two-parameter
family, while for �%� 1 the perimeter-minimizer is again unique, with 
�
L�
+ � % 7 . It is clear that 
  grows like % � for � large.1

Theorem 10. Suppose � is one component of a link of unit thickness, and
the other components can be partitioned into � sublinks, each of which is
topologically linked to � . Then the length of � is at least ���#� �  , where
�" is the minimum length of any curve surrounding � disjoint unit disks in
the plane.

Proof. By Lemma 9 we can find a point � in space, outside the unit-radius
tube surrounding � , so that coning � to � gives a cone of cone angle ��� ,
which is intrinsically flat.

Each of the sublinks � � nontrivially linked to � must puncture this
spanning cone in some point � � . Furthermore, the fact that the link has unit
thickness implies that the � � are separated from each other and from � by
distance at least � in space, and thus by distance at least � within the cone.

1 This perimeter problem does not seem to have been considered previously. However,
Schürmann [Sch2] has also recently examined this question. In particular, he conjectures
that the minimum perimeter is achieved (perhaps not uniquely) by a subset of the hexagonal
circle packing for �	�
� 
 , but proves that this is not the case for ��� ����� .
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Fig. 6. Each component in this link uses one of the perimeter-minimizing shapes from
Figure 5, according to how many other components it links. The link is therefore tight
by Theorem 10. This minimizer is not unique, in that some components could be rotated
relative to others. In other examples, even the shape of individual components (linking four
others) fails to be unique.

Thus in the intrinsic geometry of the cone, the � � are surrounded by
disjoint unit-radius disks, and � surrounds these disks while remaining at
least unit distance from them. Since � has unit thickness, it is

� ���	�
with

curvature bounded above by ) . Since the geodesic curvature of � on the
cone surface is bounded above by the curvature of � in space, we can apply
Lemma 8 to complete the proof. ��

For � � < , it is easy to construct links which achieve these lower bounds
and thus must be tight. We just ensure that each component linking � others
is a planar curve of length equal to our lower bound ��� �(�& . In particu-
lar, it must be the outer boundary of the unit neighborhood of some curve
achieving �  . In this way we construct the tight chain of Figure 1, as well
as infinite families of more complicated configurations, including the link
in Figure 6. These examples may help to calibrate the various numerical
methods that have been used to compute ropelength minimizers [Pie,Raw,
Lau]. For � �(1 , this construction does not work, as we are unable to simul-
taneously minimize the length of � and the length of all the components it
links.

These explicit examples of tight links answer some existing questions
about ropelength minimizers. First, these minimizers fail, in a strong sense,
to be unique: there is a one-parameter family of tight five-component links
based on the family of curves with length ��� . So we cannot hope to add
uniqueness to the conclusions of Theorem 7. In addition, these minimizers
(except for the Hopf link) are not

� �
. This tells us that there can be no better

global regularity result than that of Theorem 7. However, we could still
hope that every tight link is piecewise smooth, or even piecewise analytic.

Finally, note that the ropelength of a composite link should be somewhat
less than the sum of the lengths of its factors. It was observed in [SKB 
 ]
that this deficit seems to be at least +,�DB(+ . Many of our provably tight
examples, like the simple chain in Figure 1 or the link in Figure 6, are
connect sums which give precise confirmation of this observation.
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4. Linking Number Bounds

We now adapt the cone surface arguments to find a lower bound on rope-
length in terms of the linking number. These bounds are more sensitive to
the topology of the link, but are not sharp, and thus provide less geometric
information. In Section 8, we will present a more sophisticated argument,
which implies Theorem 11 as a consequence. However, the argument here
is concrete enough that it provides a nice introduction to the methods used
in the rest of the paper.

Theorem 11. Suppose � is a link of unit thickness. If � is one component
of the link, and

�
is the union of any collection of other components, let

��� � � 	 �A� denote the total linking number of
�

and � , for some choice of
orientations. Then

� �!*7� �A� � ��� �$���
�
��� � � 	 �A�
3

Proof. As in the proof of Theorem 10, we apply Lemma 9 to show that
we can find an intrinsically flat cone surface � bounded by � . We know
that � is surrounded by an embedded unit-radius tube E ; let � � � �DE
be the portion of the cone surface outside the tube. Each component of

�

is also surrounded by an embedded unit-radius tube disjoint from E . Let
� be the

� �
unit vectorfield normal to the normal disks of these tubes. A

simple computation shows that � is a divergence-free field, tangent to the
boundary of each tube, with flux � over each spanning surface inside each
tube. A cohomology computation (compare [Can]) shows that the total flux
of � through � is �����
	�� ��� �#�.� ��� � � 	 �A� . Since � is a unit vectorfield,
this implies that

�����
	 � ��� �I�
�
�
��
�� ��� � �

�
��� � � ! � ��� �<� 3

Thus � ! � ��� �<� �9� ��� � � 	 �A� . The isoperimetric inequality within � im-
plies that any curve on � surrounding � has length at least ��� � ��� � � 	 �A� .
Since � has unit thickness, the hypotheses of Lemma 8 are fulfilled, and
we conclude that

� �!*7� �A� � ��� �$��� � ��� � � 	 �A� 	
completing the proof. ��

Note that the term ���
�
��� � � 	 �A� is the perimeter of the disk with the

same area as �)&'� ��� � � 	 �@� unit disks. We might hope to replace this
term by �  , but this seems difficult: although our assumptions imply that

�

punctures the cone surface � times, it is possible that there are many more
punctures, and it is not clear how to show that an appropriate set of � are
surrounded by disjoint unit disks.

For a link of two components with linking number � , like the one in
Figure 7, this bound provides an improvement on Theorem 10, raising the
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Fig. 7. The two components of this
	 � 
�
 � -torus link have linking number
two, so by Theorem 11, the total rope-
length is at least 
 � 	�� ��� �
��� � ��� � 
 .
Laurie et al. [LKS � ] have computed a
configuration with ropelength approxi-
mately 
 � � � .

lower bound on the ropelength of each component to ��� � ��� % � , somewhat
greater than +,� .

We note that a similar argument bounds the ropelength of any curve �
of unit thickness, in terms of its writhe. We again consider the flux of �
through a flat cone � . If we perturb � slightly to have rational writhe (as
below in the proof of Theorem 21) and use the result that “link equals twist
plus writhe” [Căl1,Whi2], we find that this flux is at least G � ! � �A� G , so that

� �!*�� �A� � ��� � G � !.� �@� G�3
There is no guarantee that this flux occurs away from the boundary of the
cone, however, so Lemma 8 does not apply. Unfortunately, this bound is
weaker than the corresponding result of Buck and Simon [BS],

� �!*�� �A� �$+,� � G � !.� �@� G�3

5. Overcrossing Number

In Section 4, we found bounds on the ropelength of links; to do so, we
bounded the area of that portion of the cone surface outside the tube around
a given component � in terms of the flux of a certain vectorfield across
that portion of the surface. This argument depended in an essential way on
linking number being a signed intersection number.

For knots, we again want a lower bound for the area of that portion of
the cone that is at least unit distance from the boundary. But this is more
delicate and requires a more robust topological invariant. Here, our ideas
have paralleled those of Freedman and He (see [FH,He]) in many important
respects, and we adopt some of their terminology and notation below.

Let � be an (oriented) link partitioned into two parts � and 	 . The
linking number ��� �
�<	�	 � is the sum of the signs of the crossings of �
over 	 ; this is the same for any projection of any link isotopic to � . By
contrast, the overcrossing number ��
��
� 	�	�� is the (unsigned) number of
crossings of � over 	 , minimized over all projections of links isotopic to � .

Lemma 12. For any link partitioned into two parts � and 	 , the quantities
��� �
� 	�	�� and ��
 �
� 	�	 � are symmetric in � and 	 , and we have

G �����
�<	�	 � G � ��
��
�<	�	 ��� ��� �
�<	�	 ������
 �
� 	�	 � �
��� � � � 3
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Proof. To prove the symmetry assertions, take any planar projection with
� crossings of � over 	 . Turning the plane over, we get a projection with
� crossings of 	 over � ; the signs of the crossings are unchanged. The last
two statements are immediate from the definitions in terms of signed and
unsigned sums. ��

Given a link � , we define its parallel overcrossing number ��� ��� � to be
the minimum of ��
����L	
���+� taken over all parallel copies ��� of the link � .
That means ��� must be an isotopic link such that corresponding components
of � and � � cobound annuli, the entire collection of which is embedded
in � �

. This invariant may be compared to Freedman and He’s asymptotic
crossing number � �<��� � of � , defined by

� � ���#�I� ( *�,� / � � /
��
�� ��� 	��J�#�

G � ��G 	

where the infimum is taken over all degree-� satellites �8� and degree- �
satellites �.� of � . (This means that �8� lies in a solid torus around

�
and

represents � times the generator of the first homology group of that torus.)
Clearly,

� � ���#� � ��� ���#� � � ! ���#�1	
where � !J��� � is the crossing number of � . It is conjectured that the asymp-
totic crossing number of � is equal to the crossing number. This would
imply our weaker conjecture:

Conjecture 13. If � is any knot or link, ��� ���#�I�	� ! ���#� .
To see why this conjecture is reasonable, suppose � is an alternating knot
of crossing number 
 . It is known [TL,Thi], using the Jones polynomial,
that the crossing number of ��� � � is least +

 for any parallel � � . It is
tempting to assume that within these +

 crossings of the two-component
link, we can find not only 
 self-crossings of each knot � and ��� , but also

 crossings of � over ��� and 
 crossings of ��� over � . Certainly this is
the case in the standard picture of � and a planar parallel ��� .

Freedman and He have shown [FH] that for any knot,

� � � �A� � ��� �!* � �J� �@� B ).	
and hence that we have � �<� �@� � ) if � is nontrivial. For the parallel
overcrossing number, our stronger hypotheses on the topology of � and ���
allow us to find a better estimate in terms of the reduced bridge number� ! ��� � . This is the minimum number of local maxima of any height function
(taken over all links isotopic to � ) minus the number of unknotted split
components in � .

Proposition 14. For any link � , we have ��� ��� ��� � ! ���#� . In particular,
if � is nontrivial, ��� ��� � � � .
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Fig. 8. We show three stages of the proof of Proposition 14: At the left, we show a projection
of ������� with ��� 		� � overcrossings. In the center, we lift �
� until it and � lie respectively
above and below a slab, except for ��� 		� � simple clasps. At the right, we isotope � to
flatten the undercrossings onto the boundary of the slab and thus show that the clasps are
the only bridges in � .

Proof. By the definition of parallel overcrossing number, we can isotope
� and its parallel ��� so that, except for ��� ��� 	
��� � simple clasps, ��� lies
above, and � lies below, a slab in � �

. Next, we can use the embedded
annuli which cobound corresponding components of � and � � to isotope
the part of � below the slab to the lower boundary plane of the slab. This
gives a presentation of � with ��� ��� � bridges, as in Figure 8. ��

6. Finding a Point with Larger Cone Angle

The bounds in Theorems 10 and 11 depended on Lemma 9 to construct
a cone with cone angle � � ��� , and on Lemma 8 to increase the total
ropelength by at least � . For single unknotted curves, this portion of our
argument is sharp: a convex plane curve has maximum cone angle ��� , at
points in its convex hull.

However, for nontrivial knots and links, we can improve our results by
finding points with greater cone angle. In fact, we show every nontrivial
knot or link has a +,� cone point. The next lemma is due to Gromov [Gro,
Thm. 8.2.A] and also appears as [EWW, Thm. 1.3]:

Lemma 15. Suppose � is a link, and � is a (possibly disconnected) mini-
mal surface spanning � . Then for any point �$�:� �

through which � sheets
of � pass, the cone angle of � at � is at least ��� � .

Proof. Let � be the union of � and the exterior cone on � from � . Consider
the area ratio

� ! � ��� �
� 	��.� � ���
� � � 	

where 	��F� � � is the ball of radius � around � in � �
. As � � 	 , the area ratio

approaches � , the number of sheets of � passing through � ; as � � � ,
the ratio approaches the density of the cone on � from � , which is the cone
angle divided by ��� . White has shown that the monotonicity formula for
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minimal surfaces continues to hold for � in this setting [Whi1]: the area
ratio is an increasing function of � . Comparing the limit values at � � 	
and �<� � we see that the cone angle from � is at least ��� � . ��

As an immediate corollary, we obtain:

Corollary 16. If � is a nontrivial link, then there is some point � from which
� has cone angle at least +,� .

Proof. By the solution to the classical Plateau problem, each component
of � bounds some minimal disk. Let � be the union of these disks. Since
� is nontrivially linked, � is not embedded: it must have a self-intersection
point � . By the lemma, the cone angle at � is at least +,� . ��

Note that, by Gauss–Bonnet, the cone angle of any cone over � equals
the total geodesic curvature of � in the cone, which is clearly bounded
by the total curvature of � in space. Therefore, Corollary 16 gives a new
proof of the Fáry–Milnor theorem [Fár,Mil]: any nontrivial link has total
curvature at least +,� . (Compare [EWW, Cor. 2.2].) This observation also
shows that the bound in Corollary 16 cannot be improved, since there exist
knots with total curvature +,�#� � .

In fact any two-bridge knot can be built with total curvature (and max-
imum cone angle) +,�-� � . But we expect that for many knots of higher
bridge number, the maximum cone angle will necessarily be 1�� or higher.
For more information on these issues, see our paper [CKKS] with Greg Ku-
perberg, where we give two alternate proofs of Corollary 16 in terms of the
second hull of a link.

To apply the length estimate from Lemma 8, we need a stronger version
for thick knots: If � has thickness � , we must show that the cone point of
angle +,� can be chosen outside the tube of radius � surrounding � .

Proposition 17. Let � be a nontrivial knot, and let E be any open solid
torus with core curve � whose closure is embedded. Any smooth disk �
spanning � must have self-intersections outside E .

Proof. Replacing E with a slightly bigger smooth solid torus if neccesary,
we may assume that � is transverse to the boundary torus ��E of E . The
intersection � ����E is then a union of closed curves. If there is a self-
intersection, we are done. Otherwise, � ����E is a disjoint union of simple
closed curves, homologous within E to the core curve � (via the surface
� �:E ). Hence, within ��E , its homology class � is the latitude plus some
multiple of the meridian. Considering the possible arrangements of sim-
ple closed curves in the torus ��E , we see that each intersection curve is
homologous to zero or to 	�� .

Our strategy will be to first eliminate the trivial intersection curves, by
surgery on � , starting with curves that are innermost on ��E . Then, we
will find an essential intersection curve which is innermost on � : it is iso-
topic to � and bounds a subdisk of � outside E , which must have self-
intersections.
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Fig. 9. Two views of a cone, whose cone angle is precisely 
 � , on the symmetric trefoil
knot from Figure 4. Computational data shows this is close to the maximum possible cone
angle for this trefoil.

To do the surgery, suppose � is an innermost intersection curve homol-
ogous to zero in ��E . It bounds a disk � within ��E and a disk 	 within
� . Since � is an innermost curve on ��E , � � � is empty; therefore we
may replace 	 with � without introducing any new self-intersections of � .
Push � slightly off ��E to simplify the intersection. Repeating this process
a finite number of times, we can eliminate all trivial curves in � � ��E .

The remaining intersection curves are each homologous to 	 � on ��E
and thus isotopic to � within E . These do not bound disks on ��E , but
do on � . Some such curve � � must be innermost on � , bounding a sub-
disk � � . Since ��� is nontrivial in E , and � � � ��E is empty, the subdisk � �
must lie outside E . Because � � is knotted, � � must have self-intersections,
clearly outside E . Since we introduced no new self-intersections, these are
self-intersections of � as well. ��

We can now complete the proof of the main theorem of this section.

Theorem 18. If � is a nontrivial knot then there is a point � , outside the
thick tube around � , from which � has cone angle at least +,� .

Proof. Span � with a minimal disk � , and let E  be a sequence of closed
tubes around � , of increasing radius �  � ��� �@� . Applying Proposition 17,
� must necessarily have a self-intersection point �  outside E  . Using
Lemma 15, the cone angle at �  is at least +,� . Now, cone angle is a contin-
uous function on � �

, approaching zero at infinity. So the �  have a subse-
quence converging to some � �$� �

, outside all the E  and thus outside the
thick tube around � , where the cone angle is still at least +,� . ��

It is interesting to compare the cones of cone angle +,� constructed by
Theorem 18 with those of cone angle ��� constructed by Lemma 9; see
Figure 9.
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Fig. 10. This trefoil knot, shown with its
thick tube � , is coned to the point � to
form the cone surface � � , as in the proof of
Theorem 19. The disk � is normal to the
knot at the point furthest from � . We fol-
low two integral curves of � within ����� ,
through at least ��� 		� � intersections with
� � , until they end on � . Although we have
drawn the curves as if they close after one
trip around � , this is not always the case.

7. Parallel Overcrossing Number Bounds for Knots

We are now in a position to get a better lower bound for the ropelength of
any nontrival knot.

Theorem 19. For any nontrivial knot � of unit thickness,

�
�!*7� �A� � +,� �$��� � ��� � �@� � ��� � � � % � ��3
Proof. Let E be the thick tube (the unit-radius solid torus) around � , and
let � be the

� �
unit vectorfield inside E as in the proof of Theorem 11.

Using Theorem 18, we construct a cone surface � of cone angle +,� from a
point � outside E .

Let � � be the cone defined by deleting a unit neighborhood of � � in the
intrinsic geometry of � . Take any � � � farthest from the cone point � .
The intersection of � with the unit normal disk � to � at � consists only
of the unit line segment from � towards � ; thus � is disjoint from � � .

In general, the integral curves of � do not close. However, we can de-
fine a natural map from E ��� to the unit disk � by flowing forward along
these integral curves. This map is continuous and distance-decreasing. Re-
stricting it to � � � E gives a distance-decreasing (and hence area-decreasing)
map to � , which we will prove has unsigned degree at least ��� � �A� .

Note that ��� &'� � � � is isotopic to � within E , and thus ��� � �@� �
��� � � �+� . Furthermore, each integral curve

�
of � in E � � can be closed

by an arc within � to a knot
� � parallel to ��� . In the projection of

� � and
� � from the perspective of the cone point,

� � must overcross ��� at least
��� � � �+� times. Each of these crossings represents an intersection of

� �
with � � . Further, each of these intersections is an intersection of

�
with ��� ,

since the portion of
� � not in

�
is contained within the disk � . This proves

that our area-decreasing map from � � � E to � has unsigned degree at least
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��� � �@� . (An example of this map is shown in Figure 10.) Since � ! � ��� �:�I�
� it follows that

� ! � ��� � � � � � ! � ��� � � �HE � � � ��� � �A� 3
The isoperimetric inequality in a +,� cone is affected by the negative

curvature of the cone point. However, the length � required to surround
a fixed area on � � is certainly no less than that required in the Euclidean
plane:

� �(���
�
��� � �A� 3

Since each point on � � is at unit distance from � , we know � � is sur-
rounded by a unit-width neighborhood inside � . Applying Lemma 8 we
see that

� �!*�� �@� �$+,�#�$��� � ��� � �A�1	
which by Proposition 14 is at least ���I� � � % � � . ��

8. Asymptotic Crossing Number Bounds for Knots and Links

The proof of Theorem 19 depends on the fact that � is a single knot: for a
link � , there would be no guarantee that we could choose spanning disks �
for the tubes around the components of � which were all disjoint from
the truncated cone surface. Thus, we would be unable to close the integral
curves of � without (potentially) losing crossings in the process.

We can overcome these problems by using the notion of asymptotic
crossing number. The essential idea of the proof is that (after a small defor-
mation of � ) the integral curves of � will close after some number of trips
around � . We will then be able to complete the proof as above, taking into
account the complications caused by traveling several times around � .

For a link � of 
 components, � � 	 3 3 3 	 � ; , Freedman and He [FH]
define a relative asymptotic crossing number

� � � � � 	
�#� &'� (+*�,�
�
� � � / ��
�� � � � 	��.� �G � ��G 	

where the infimum is taken over all degree-� satellites � � � of � � and all
degree- � satellites �.� of � . It is easy to see that, for each � ,

� � � � � 	
� � � � �
46 �
G ��� � � � 	 �

�
� GB3

Freedman and He also give lower bounds for this asymptotic crossing
number in terms of genus, or more precisely the Thurston norm. To un-
derstand these, let E be a tubular neighborhood of � . Then � � � ��E � has a
canonical basis consisting of latitudes � � and meridians � � . Here, the lat-
itudes span the kernel of the map � � � ��E � � � � ��� � � E � induced by
inclusion, while the meridians span the kernel of � � � ��E � ��� � �KE � .
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The boundary map � � ��� � � E 	 ��E � � � � � ��E � is an injection; its
image is spanned by the classes

� � &'� � � � � �
46 �
��� � � � 	 �

�
� �
�
3

We now define
��� � � � 	
� � &'��� (+*� G �LG � 	

where the minimum is taken over all embedded surfaces � representing the
(unique) preimage of � � in � � ��� � � E 	 ��E � , and G �LG � is the Thurston norm
of the surface � . That is,

G � G �A&'� �
���
B � � � ; �1	

where the sum is taken over all components � ; of � which are not disks
or spheres, and � is the Euler characteristic. With this definition, Freedman
and He prove [FH, Thm. 4.1]:

Proposition 20. If � is a component of a link � ,

� � � �$	
� � � ��� � �%	
�#� 3
In particular, � � � �$	
� � � ��� �!* � � � �A� B ) . ��

Our interest in the asymptotic crossing number comes from the follow-
ing bounds:

Theorem 21. Suppose � is one component of a link � of unit thickness.
Then

�
�!*
� �@� �(���#�$��� � � � � �%	
�#�
3
If � is nontrivially knotted, this can be improved to

�
�!*
� �@� � +,�#�$��� � � � � �%	
�#�
3
Proof. As before, we use Lemma 9 or Theorem 18 to construct a cone
surface � of cone angle ��� or +,� . We let � � be the complement of a unit
neighborhood of � � , and set � ��&'� � ��� , isotopic to � .

Our goal is to bound the area of � � below. As before, take the collec-
tion E of embedded tubes surrounding the components of � , and let � be
the

� �
unit vectorfield normal to the normal disks of E . Fix some compo-

nent
�

of � (where
�

may be the same as � ), and any normal disk � of the
embedded tube E	� around

�
. The flow of � once around the tube defines a

map from � to � . The geometry of � implies that this map is an isometry,
and hence this map is a rigid rotation by some angle � � . Our first claim is
that we can make a

� �
-small perturbation of

�
which ensures that � � is a

rational multiple of ��� .
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Fix a particular integral curve of � . Following this integral curve once
around

�
defines a framing (or normal field) on

�
which fails to close by

angle � � . If we define the twist of a framing � on a curve
�

by

��� ��� � � )
���

� � ���� ��� 
 � �0	
it is easy to show that this framing has zero twist. We can close this framing
by adding twist B � � ����� , defining a framing � on

�
. If we let � !.� � � be the

writhe of
�

, then the Călugăreanu–White formula [Căl1,Căl2,Căl3,Whi2]
tells us that ��� � � 	 � � ��� � !J� � � B � � ����� , where

� � is a normal pushoff
of
�

along � . Since the linking number ��� � � 	 � � � is an integer, this means
that � � is a rational multiple of ��� if and only if � !J� � � is rational. But we
can alter the writhe of

�
to be rational with a

� �
-small perturbation of

�

(see [Ful,MB] for details), proving the claim.
So we may assume that, for each component

�
of � , � � is a rational

multiple ��� � � � � � of ��� . Now let � be the least common multiple of the
(finitely many) � � . We will now define a distance- and area-decreasing map
of unsigned degree at least � � � � �%	
�#� from the intersection of E and the
cone surface � � to a sector of the unit disk of angle ��� � � .

Any integral curve of � must close after � � trips around
�

. Thus, the
link

� �
defined by following the integral curves through � � � � points spaced

at angle ��� � � around a normal disk to
�

is a degree- � satellite of
�

. Further,
if we divide a normal disk to

�
into sectors of angle ��� � � , then

� �
intersects

each sector once.
We can now define a distance-decreasing map from ��� � E � to the sector

by projecting along the integral curves of � . Letting � � be the union of all
the integral curves

� �
, and identifying the image sectors on each disk gives

a map from � � �HE / to the sector. By the definition of � �<� �%	
�#� ,
��
���� � 	 � � �I� ��
�� �%	
� � � � � � � � �%	
�#�1	

so � � overcrosses � � at least � � � � �%	
�#� times. Thus we have at least
� � � � �$	
� � intersections between � � and � � , as in the proof of Theo-
rem 19. Since the sector has area � � � , this proves that the cone � � has
area at least � � � � �$	
� � , and thus perimeter at least ���

�
� �<� �%	
�#� . The

theorem then follows from Lemma 8 as usual. ��
Combining this theorem with Proposition 20 yields:

Corollary 22. For any nontrivial knot � of unit thickness,

�
�!*7� �A� � ���
�
� �

�
��� �!* � � � �A� B )
	 3

For any component � of a link � of unit thickness,

�
�!*�� �A� � ��� � )�� � � � � �%	
�#� �F	
where � � is the minimal Thurston norm as above.
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Fig. 11. At the left we see the result of replacing one component of a 	 � 
 �
� –torus link by its
Whitehead double. In this link � , the other component has Alexander norm, and hence also
Thurston norm, equal to � . Thus Corollary 22 shows the total ropelength of � is at least
� � 	 � � � � � . For the three-fold link at the right, which is a bangle sum of three square-
knot tangles, we expect the Thurston norm to be

�
(which would give ropelength at least



� 	�� � � � � ), but we have found no way to prove it is not less.

As we observed earlier, � � � � � 	
� � is at least the sum of the linking
numbers of the �

�
with � � , so Theorem 21 subsumes Theorem 11. Often,

it gives more information. When the linking numbers of all � � and �

�
vanish, the minimal Thurston norm � � � � � 	
� � has a particularly simple
interpretation: it is the least genus of any embedded surface spanning � �
and avoiding � . For the Whitehead link and Borromean rings, this invariant
equals one, and so these bounds do not provide an improvement over the
simple-minded bound of Theorem 10.

To find an example where Corollary 22 is an improvement, we need to
be able to compute the Thurston norm. McMullen has shown [McM] that
the Thurston norm is bounded below by the Alexander norm, which is eas-
ily computed from the multivariable Alexander polynomial. One example
he suggests is a � ��	 �C�
� –torus link with two components. If we replace one
component � by its Whitehead double, then in the new link, the other com-
ponent has Alexander norm �C�@B�) . Since it is clearly spanned by a disk
with �C� punctures (or a genus � surface) avoiding � , the Thurston norm is
also �C�@B ) . Figure 11 (left) shows the case � �97 , where the Alexander
polynomial is � )�� � � � � � � � )LBA� �0� ) BA��� .

On the other hand, if � is either component of the three-fold link �
on the right in Figure 11, we can span � with a genus-two surface, so
we expect that � � � �%	
�#�<�97 , which would also improve our ropelength
estimate. However, it seems hard to compute the Thurston norm in this case.
The Alexander norm in this case is zero, and even the more refined bounds
of Harvey [Har] do not show the Thurston norm is any greater.

9. Asymptotic Growth of Ropelength

All of our lower bounds for ropelength have been asymptotically propor-
tional to the square root of the number of components, linking number,
parallel crossing number, or asymptotic crossing number. While our meth-
ods here provide the best known results for fairly small links, other lower



On the Minimum Ropelength of Knots and Links 23

bounds grow like the
�
� power of these complexity measures. These are of

course better for larger links, as described in our paper Tight Knot Values
Deviate from Linear Relation [CKS]. In particular, for a link type � with

crossing number � , the ropelength is at least
� ������ � �

��� �
, where the constant

comes from [BS]. In [CKS] we gave examples (namely the � 
8	 
#B ) � –torus
knots and the 
 -component Hopf links, which consist of 
 circles from a
common Hopf fibration of � �

) in which ropelength grows exactly as the
�
�

power of crossing number.

Our Theorem 10 proves that for the the simple chains (Figure 1), rope-
length must grow linearly in crossing number � . We do not know of any
examples exhibiting superlinear growth, but we suspect they might exist,
as described below.

To investigate this problem, consider representing a link type � with
unit edges in the standard cubic lattice �

�
. The minimum number of edges

required is called the lattice number 
 of � . We claim this is within a con-
stant factor of the ropelength � of a tight configuration of � . Indeed, given a
lattice representation with 
 edges, we can easily round off the corners with
quarter-circles of radius

�� to create a
� ���	�

curve with length less than 
 and
thickness

�� , which thus has ropelength � at most � 
 . Conversely, it is clear
that any thick knot of ropelength � has an isotopic inscribed polygon with� � � � edges and bounded angles; this can then be replaced by an isotopic
lattice knot on a sufficiently small scaled copy of �

�
. We omit our detailed

argument along the lines, showing 
 ��� + � , since Diao et al. [DEJvR] have
recently obtained the better bound 
 � )@� � .

The lattice embedding problem for links is similar to the VLSI layout
problem [Lei1,Lei2], where a graph whose vertex degrees are at most +
must be embedded in two layers of a cubic lattice. It is known [BL] that any
� -vertex planar graph can be embedded in VLSI layout area

� � � � � � �&�
� � � .
Examples of planar � -vertex graphs requiring layout area at least � � � �&�
are given by the so-called trees of meshes. We can construct � -crossing
links analogous to these trees of meshes, and we expect that they have lat-
tice number at least � � � � � , but it seems hard to prove this. Perhaps the
VLSI methods can also be used to show that lattice number (or equiva-
lently, ropelength) is at most

� � � � � � ���
� � � .
Here we will give a simple proof that the ropelength of an � -crossing

link is at most �C+8� �
, by constructing a lattice embedding of length less

than )@�C� �
. This follows from the theorem of Schnyder [dFPP,Sch1] which

says that an � -vertex planar graph can be embedded with straight edges
connecting vertices which lie on an � � B.) � �?� � B.) � square grid. We
double this size, to allow each knot crossing to be built on a � �$� � �
array of vertices. For an � -crossing link diagram, there are �C� edges, and
we use �C� separate levels for these edges. Thus we embed the link in a
� �C�$B � � � � �C�$B � � � � �C���(� � piece of the cubic lattice. Each edge has
length less than 1C� , giving total lattice number less than )@�C� �

.
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Note that Johnston has recently given an independent proof [Joh] that an
� -crossing knot can be embedded in the cubic grid with length

� � � � � . Al-
though her constant is worse than our )@� , her embedding is (like a VLSI lay-
out) contained in just two layers of the cubic lattice. It is tempting to think
that an

� � � � � bound on ropelength could be deduced from the Dowker
code for a knot, and in fact such a claim appeared in [Buc]. But we see no
way to make such an argument work.

The following theorem summarizes the results of this section:

Theorem 23. Let � be a link type with minimum crossing number � , lattice
number 
 , and minimum ropelength � . Then� +,�

)8) ���
��� � � � � � 
 � �C+8�

�
3 ��

10. Further Directions

Having concluded our results, we now turn to some open problems and
conjectures.

The many examples of tight links constructed in Section 3 show that the
existence and regularity results of Section 2 are in some sense optimal: we
know that ropelength minimizers always exist, we cannot expect a rope-
length minimizer to have global regularity better than

� ���	�
, and we have

seen that there exist continuous families of ropelength minimizers with
different shapes. Although we know that each ropelength minimizer has
well-defined curvature almost everywhere (since it is

� ���	�
) it would be in-

teresting to determine the structure of the singular set where the curve is
not

� �
. We expect this singular set is finite, and in fact:

Conjecture 24. Ropelength minimizers are piecewise analytic.

The �" bound for the ropelength of links in Theorem 10 is sharp, and so
cannot be improved. But there is a certain amount of slack in our other ro-
pelength estimates. The parallel crossing number and asymptotic crossing
number bounds of Section 7 and Section 8 could be immediately improved
by showing:

Conjecture 25. If � is any knot or link, � � ��� � � ��� ���#�I�	� ! ���#� .
For a nontrivial knot, this would increase our best estimate to +,� �

��� % 7 / �8743;+=< , a little better than our current estimate of +,� � ��� % � /
�:)�3;+=< (but not good enough to decide whether a knot can be tied in one foot
of one-inch rope). A more serious improvement would come from proving:

Conjecture 26. The intersection of the tube around a knot of unit thickness
with some +,� cone on the knot contains ��� � �A� disjoint unit disks avoiding
the cone point.
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Fig. 12. Pieranski’s numerically computed tight trefoil � has three-fold symmetry, and
there is a 

� cone point � on the symmetry axis. The cone from � also has three-fold
symmetry, and a fundamental sector develops into a 

��� � wedge in the plane, around the
point � . Here we show the development of that sector. The shaded regions are the intersec-
tion of the cone with the thick tube around � . These include a strip (of width at least � )
inwards from the boundary � of the cone, together with a disk around the unique point �
where � cuts this sector of the cone. Our Conjecture 26 estimates the area of the cone from
below by the area of a unit disk around � plus a unit-width strip around � . The figure shows
that the actual shaded disk and strip are not much bigger than this, and that they almost fill
the sector.

Note that the proof of Theorem 19 shows only that this intersection has
the area of ��� � �A� disks. This conjecture would improve the ropelength
estimate for a nontrivial knot to about 7 	:36<:) , accounting for

� 7�� of Pier-
anski’s numerically computed value of 78�436181 for the ropelength of the tre-
foil [Pie]. We can see the tightness of this proposed estimate in Figure 12.

Very recently, Diao has announced [Dia] a proof that the length of any
unit-thickness knot � satisfies

)@1�� � ! � �A� � � �!*�� �@� � �
�!*�� �A� B ) A 36787C+ �=3

This improves our bounds in many cases. He also finds that the ropelength
of a trefoil knot is greater than �C+ .

Our best current bound for the ropelength of the Borromean rings is
)@��� / 7,A 3BA 	 , from Theorem 10. Proving only the conjecture that � � ��� �I�
� ! ���#� would give us a fairly sharp bound on the total ropelength: If each
component has asymptotic crossing number � , Theorem 21 tells us that
1��I� )&� % � �!/0+=<436<:) is a bound for ropelength. This bound would account
for at least A�5�� of the optimal ropelength, since we can exhibit a configura-
tion with ropelength about <8543 	,< , built from three congruent planar curves,
as in Figure 13.

Although it is hard to see how to improve the ropelength of this con-
figuration of the Borromean rings, it is not tight. In work in progress with
Joe Fu, we define a notion of criticality for ropelength, and show that this
configuration is not even ropelength-critical.
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Fig. 13. This configuration of the Borromean rings has ropelength about � � � � � . It is built
from three congruent piecewise-circular plane curves, in perpendicular planes. Each one
consists of arcs from four circles of radius � centered at the vertices of a rhombus of side 
 ,
whose major diagonal is 
 units longer than its minor diagonal.

Finally, we observe that our cone surface methods seem useful in many
areas outside the estimation of ropelength. For example, Lemma 9 provides
the key to a new proof an unfolding theorem for space curvess:

Proposition 27. For any space curve � & � � � � �
, parametrized by arc-

length, there is a plane curve � � of the same length, also parametrized by
arclength, so that for every � , � in � �

,

G � � �5� B � ��� � G � G � � � �5� B � � ���8� GB3
Proof. By Lemma 9, there exists some cone point � for which the cone
of � to � has cone angle ��� . Unrolling the cone on the plane, an isome-
try, constructs a plane curve � � of the same arclength. Further, each chord
length of � � is a distance measured in the instrinsic geometry of the cone,
which is at least the corresponding distance in � �

. ��
This result was proved by Reshetnyak [Res1,Res3] in a more general

setting: a curve in a metric space of curvature bounded above (in the sense
of Alexandrov) has an unfolding into the model two-dimensional space
of constant curvature. The version for curves in Euclidean space was also
proved independently by Sallee [Sal]. (In [KS], not knowing of this earlier
work, we stated the result as Janse van Rensburg’s unfolding conjecture.)

The unfoldings of Reshetnyak and Sallee are always convex curves in
the plane. Our cone surface method, given in the proof of Proposition 27,
produces an unfolding that need not be convex, as shown in Figure 14.
Ghomi and Howard have recently extended our argument to prove stronger
results about unfoldings [GH].
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